Climate change impacts in Chelan County

Crystal Raymond, PhD

age Amy Snove

Climate Adaptation Specialist, Climate Impacts Group University of Washington

Dealing with climate change means...

Addressing the root cause

Reduce atmospheric greenhouse gases

Preparing for the consequences

Reduce vulnerabilities and build resilience

Climate Matters: Embedded Expectations

Observed Changes

The average year in the NW is 1.54°F warmer than during the first half of the 20th century.

The coldest day of the year is 4.78°F warmer.

NCA, 2018

1986–2016 relative to 1901-1960

Washington Cascades snowpack decreased ~25% between the mid-20th century & 2006.

Peak streamflow from snowmelt is occurring up to 20 days earlier (1948-2002) in the Northwest.

The number of large fires and area burned in the Northwest increased from 1973 to 2012.

Source: Westerling 2016

The question is no longer *if* climate is changing but *how fast* & *how much*.

Projected climate changes in WA state

Less snow, earlier melt

Wetter winters, drier summers

Streamflows: Higher highs Lower lows

Natural variability

More wildfire

Snover et al. 2013, Mauger et al. 2015.

April 1 Snow Water Equivalent

2020s

Elsner et al. 2010

2080s

Greater Potential for Flooding

Relative to 1971 to 2000, climate model ensemble average. Source: Integrated Scenarios 2015.

Increased Wildfire Area Burned

X 2 by 2020s X 4 by 2040s

M/X 2 by 2040s

Relative to 1980-2006 average; moderate greenhouse gas scenario

Littell et al. 2010, 2012

Greater Potential for Wildfire

Twice as many extreme fire danger days by the 2050s, relative to 1971 to 2000.

Source: Climate Toolbox

Agriculture

Climate impacts on WA agriculture depend on location, season & crop

For the Columbia basin in the 2030s Irrigation **supply increases** overall Irrigation **demand decreases** overall

% change in 2030s irrigation demands compared to historical

Infrastructure

Recreation

Health & Well-Being

UW Climate Impacts Group @CIG_UW cig.uw.edu

Northwest Climate Adaptation Science Center @NW_CASC nwcasc.uw.edu

