

Chelan County

SQuilchuck Stormwater Outfall

DESIGN REPORT

Prepared for Chelan County in Fulfillment of the W ashington State Department of Ecology Stormwater Retrofit and LID Requirements

RH2 Engineering, Inc.
October 2014

90\% Design

Chelan County
 Squilchuck Stormwater Outfall
 Design Report

The information contained in this report was prepared by and under the direct supervision of the undersigned.

Signed X/XX/XXXX

[^0][^1]

RH2 Engineering, Inc.
October 2014

Creative Ideas

Innovative Solutions
Quality Service

Chelan County
Squilchuck Stormwater Outfall
Design Report
Table of Contents

1. Introduction 1
2. Basin Description 1
3. Site Description 2
4. Design Alternatives and Analysis 2
Alternatives Considered 2
Final Alternative 3
Design and Modeling 4
Proposed Water Quality and Flow Control Performance 6
Drawings 7
HydroCAD Model 7
5. Implementation Recommendation 8
6. Cost Estimate 8
7. Proposed Schedule 8

APPENDICES

Appendix A - Basin Maps
Appendix B - Preliminary Plans
Appendix C - Cost Estimate Details
Appendix D - Storm Simulation Output
Appendix E - Soils

1. Introduction

The Chelan County (County) Squilchuck Outfall drains an approximately 100-acre residential-zoned basin in south Wenatchee, Washington. Two stormwater trunklines running to the west along Viewdale Street and Terminal Avenue (the upper basin) intersect a 36 -inch line (48 -inch line at the outfall) that runs to the south on South Wenatchee Avenue approximately 1,200 feet (the lower basin) before outfalling to Squilchuck Creek. Appendix A contains a vicinity map and a basin map.
The County is pursuing a combination hydrodynamic separator/subsurface infiltration facility for stormwater that currently enters the creek untreated. Because of the size of the Squilchuck basin and the goal of creating a project which has a competitive overall cost during the next grant cycle, the goal of this design is to detain and infiltrate the 6 -month, short-duration storm. Larger events will still be directed through the pretreatment/infiltration system, but will be allowed to overflow to the creek; however, the first flush events, which are assumed to carry the highest concentrations of oil, grease, anti-icer, sediment, and other pollutants identified in the Washington State Department of Ecology (Ecology) 2004 Stormwater Management Manual for Eastern Washington (SWMMEW), will likely be captured. Flows in excess of the hydrodynamic separator's rated capacity will bypass the pretreatment/infiltration system to avoid backwater and pressurization issues.
The low-impact development (LID) Best Management Practices (BMPs) outlined in the Eastern Washington Low Impact Development Guidance Manual were evaluated; however, due to high-density development, lack of right-of-way, and concern that any surface treatment BMPs may be prone to illegal dumping in this area, the County has requested investigation of subsurface treatment/infiltration methods. The project proposes to implement BMPs intended to meet local requirements and follow guidance provided by the Washington State Department of Transportation's (WSDOT) Highway Runoff Manual (HRM), November 2011, edition and Ecology's SWMMEW.

2. Basin Description

For the purposes of this report, the upper basin includes all of the area that drains to the trunklines in Viewdale Street and Terminal Avenue. The lower basin consists of the area along South Wenatchee Avenue from Viewdale Street to Squilchuck Creek.

The total size of the Squilchuck basin is approximately 100 acres (Appendix A). Much of the basin within the City of Wenatchee (City) is zoned as high-density residential with lots of approximately 0.15 acres in size. This zoning and lot size is similar into the County except on the steeper slopes.

The existing topography slopes generally to the east at around 3 percent with some steeper slopes up to 10 percent. There is approximately 200 feet of elevation difference between the top of the basin and the outfall into Squilchuck Creek. There is a ravine just north of Boodry Street that is approximately 200 feet wide at the mouth and runs approximately 500 feet to the west. It is assumed that this feature contributes to a groundwater flow in this area. A pothole investigation to the south of this ravine revealed that groundwater in this area will be an issue. Groundwater was confined below a clay layer at a depth of approximately 6 feet. Once ruptured, the groundwater stabilized within hours to approximately 3 feet below the surface. A borehole and another pothole are located at the south end of the site approximately 50 feet from the creek. This area had coarser soils and lower groundwater. The existing topography is shown in Figure 2 in Appendix A.

3. Site Description

Existing stormwater controls in the basin consist only of the conveyance system. This project proposes to pre-treat, detain, and infiltrate a portion of the stormwater in order to improve the quality of the water that ultimately flows into the creek.

The project site is considered to be mainly in the lower basin, as explained in the Design Alternatives and Analysis section of this report.

Critical areas within or immediately adjacent to the project boundaries consist of geologic hazards; risks for flooding, earthquakes, and liquefaction are known to be present (see geology report). The project area is located within Flood Zone X, which is at moderate to low risk with no base flood elevations or depths present in the zone. Figure 3 in Appendix A shows the flood maps for this area.

A geological field assessment has been completed as part of the 90-percent design; however, further investigation is needed before construction to ascertain the southern extent of the high groundwater. The average infiltration rate was found to be approximately 4.8 inches per hour near the proposed infiltration pipe.

The Natural Resources Conservation Service (NRCS) identifies most of the upper basin as Wenatchee silt loam with 0 to 3 percent slopes and Peshastin loam with 8 to 15 percent slopes. The lower basin is characterized as Peshastin stony loam with 25 to 45 percent slopes and Cashmont stony sandy loam with 0 to 25 percent slopes. The NRCS report is included in Appendix E.

Existing water and sanitary sewer lines run underneath the existing roadway. Overhead phone and power lines are also in the project vicinity. Existing businesses, homes, and driveways are located along the project boundaries, and will have little impact on the stormwater drainage improvements.

4. Design Alternatives and Analysis

The County has decided to proceed with infiltration facilities in the lower basin at this time, as the flatter slopes provide better constructability and the existing pipe in this section is severely degraded and is nearing the end of its service life.

Alternatives Considered

Options explored for the lower basin include the following.

1. Constructing a 48 -inch perforated pipe running along South Wenatchee Avenue with level control structures to allow the pipe to act as an infiltration gallery. Additionally, an in-line pretreatment device upstream of the perforated pipe would provide oil/water separation and hydrodynamic separation and reduce the risk of clogging in the infiltration gallery.
Conclusion: This option represents the most cost-effective solution.
2. Purchasing a $1 / 3$-acre parcel that is currently for sale on the north side of Squilchuck Creek and west side of South Wenatchee Avenue and installing a perforated pipe grid to detain and infiltrate the entire 6-month, short-duration storm (SDS), as well as approximately 40 percent of the 2-year, long-duration storm (LDS).
Conclusion: This option was deemed less cost effective at this time as preliminary estimates suggest costs upwards of $\$ 480,000$. Also, there is a potential for illegal dumping to occur and become a maintenance problem.
3. Utilizing the extra capacity in the City's new stormwater pond near the intersection of South Wenatchee Avenue and Malaga-Alcoa Highway.

Conclusion: This option is not viable because the City plans to route more water to the pond in the future.

4. Replacing the large 30 -inch pipe in the lower basin that is currently nearing the end of its service life with a 36 -inch corrugated polyethylene pipe.
Conclusion: This option would provide a beneficial upgrade if done together with Option 1 to help minimize the risk of failure and clogging the proposed perforated pipe.

Options explored for the upper basin include:
5. Placing drywells in various locations.

Conclusion: This option is more expensive than a horizontal perforated pipe per unit volume stored.
6. Investigating the viability of constructing a detention/infiltration pond or structure on Wenatchee School District's property between Terminal Avenue and S Wenatchee Avenue to detain and/or infiltrate a large portion of stormwater coming down the Terminal Avenue trunkline.
Conclusion: This option represents a viable addition to the perforated pipe near the creek, but will require extensive planning, coordination, and negotiation with the school district.

Final Alternative

The most cost-effective solution for the lower basin appears to be option 1. The design includes approximately 75 linear feet of 48 -inch perforated pipe beginning approximately 100 feet from Squilchuck Creek. This would allow flexibility for the County's future plan of moving the outfall if the bridge over Squilchuck Creek is replaced. The presence of a small un-named creek in the ravine north of Boodry Street precludes the recommendation of extending the perforated infiltration pipe to the north any farther due to concerns of adding to the flow of that underground spring. During the geotechnical investigations, the area immediately south of this ravine was found to have groundwater confined below a clay layer at about a 6 -foot depth. Once the clay layer was punctured, the groundwater bubbled up and stabilized at about 3 feet from the surface. One other pothole and a borehole were excavated at the south end of the project near the creek. Groundwater at this location was observed to coincide approximately with the water level in the creek. An additional pothole is needed between the two exploration areas to ensure that the infiltration pipe is out of the high groundwater zone.

Since the project is more cost effective with more storage, the plans show a non-perforated section of pipe in the high groundwater zone. This will simply store pretreated water until it can infiltrate or overflow into the creek. The manhole at the end of the infiltration pipe will include a weir that will hold the water level 3 feet above the pipe invert. A valve is included near the pipe invert to allow the system to be drained if necessary.

A portion of option 4 will also be included in this project. Existing pipe along the lower section of this stormwater system that is deteriorating, but not being replaced by perforated pipe will be
replaced up to the City limits. Much of this pipe is heavily degraded and is allowing soil to be eroded and carried to the creek.

Design and Modeling
Drainage Basin
The model was built in HydroCAD version 10.00. The catchment area is modeled as 98.3 acres of $1 / 8$-acre lots in Hydrologic Soil Group (HSG) B and C and 65 percent impervious surface. The curve number (CN) is 85 or 90 , depending on the HSG. The time of concentration calculation is broken out into segments that correspond with sheet flow, shallow concentrated flow and pipe flow as the stormwater travels approximately 4,500 feet from the farthest reach of the basin to the beginning of the proposed improvements. This yielded a time of concentration of 13.3 minutes.

Design Storms

Two main storms were used to analyze the system. The 24-hour SCS Type IA distribution was used to simulate longer regional storms, and the 3-hour, SDS which simulates thunderstorms. The following precipitation depths were used:

LDS Events	
Recurrence (yrs)	Precip (in)
100	2.50
50	2.40
25	2.20
10	1.80
2	1.24
0.5	0.818

SDS Events	
Recurrence (yrs)	Precip (in)
100	1.47
50	1.22
25	1.00
10	0.76
2	0.48
0.5	0.30

System Inlet Pipe

Since modeling every structure and its tributary area is out of the scope of this project, the collection system was simplified in the model. The basin drains directly to a 36 -inch corrugated metal pipe (CMP) reach which is intended to limit system inflows to the maximum Manning open channel flow while neglecting entrance losses, which may result in conservative (high) flows. However, inspection of high water marks in the 48 -inch lower basin pipes indicates that flow depths routinely reach half of the pipe depth. Assuming a slope of 2%, it is evident that the pipe regularly conveys flows of about 50 cfs . This is affirmed by the model-the 25 -year SDS produces about 50 cubic feet per second (cfs) in this pipe. In larger storms, the inlet pipe detains some of the flow generated in the basin (compare generated and conveyed flows in Table 4.1), but eventually drains the whole amount of runoff. The amount of water represented by the difference in the basin-generated peak flow and the peak capacity of the pipe is neglected in this analysis because the model does not provide enough detail to confirm whether or not this amount of water would even enter the system. The 100 -year SDS model indicates that approximately 20% of the total basin-generated volume was detained in the inlet pipe, and may never actually enter the system in reality.

Table 4.1: System Inflows Model Output

Storm	Basin- Generated Flow (cfs)	Inlet Pipe Conveyed Flow (cfs)	Vol. Detained by Inlet Pipe (cf)
$0.5-\mathrm{yr}$, 24-hr Type IA	1.4	1.4	0
2-yr, 24-hr Type IA	7.15	7.14	0
$10-\mathrm{yr}$ 24-hr Type IA	15.42	15.41	0
$25-\mathrm{yr}, 24-\mathrm{hr}$ Type IA	25.75	25.74	0
$50-\mathrm{yr}, 24$-hr Type IA	30.14	30.12	0
100 -yr, 24-hr Type IA	32.37	32.35	0
$0.5-\mathrm{yr}, 3-\mathrm{hr}$ SDS	0.06	0.06	0
2 2-yr, 3-hr SDS	5.77	5.75	0
$10-\mathrm{yr}, 3-\mathrm{hr}$ SDS	25.35	25.31	0
$25-\mathrm{yr}, 3-\mathrm{hr}$ SDS	53.04	53.01	0
$50-\mathrm{yr}, 3-\mathrm{hr}$ SDS	83.72	70.72	6,725
$100-\mathrm{yr}, 3-\mathrm{hr}$ SDS	122.63	69.33	36,899

SDS $=$ short-duration storm; $\mathrm{cf}=$ cubic feet $; \mathrm{cfs}=$ cubic feet per second

Pretreatment and Subsurface Infiltration System

Downstream of the modeled system inlet pipe is the existing flow splitter structure, which was installed in the last few years to direct small flows out of the storm sewer and into a rock lined infiltration pond at the north end of the project site. The pipe between the flow splitter and the pond is 6 inches in diameter. The pond's overflow structure is connected back to the storm system. After this connection a proposed flow splitter structure directs smaller flows through a Contech Vortechs 9000 hydrodynamic separator for pretreatment. Flow into the Vortechs unit from the flow splitter is controlled with a 16 -inch-diameter orifice to restrict flows greater than 14 cfs , which is Contech's rated maximum flow. Ecology's General Use Level Designation (GULD) for this unit allows a maximum flow of 5 cfs to satisfy pretreatment standards; however, it is assumed that a greater volume of mostly-pretreated water is more beneficial than a smaller volume of totally pretreated water. If Ecology prefers, the orifice can simply be downsized to restrict flows to 5 cfs and route the remaining 9 cfs to the bypass. The pretreatment volumes versus the total outfall to the creek are shown in Figure 4.1.

Figure 4.1: Total Volume Pretreated and Total Volume Reaching Creek

Stormwater exiting the Vortechs unit is directed into a 48 -inch-diameter, 180-foot-long unperforated storage pipe set at zero slope that is meant to detain water until it can be infiltrated. A 48-inchdiameter, 75 -foot-long perforated pipe comes after the storage pipe. Previous designs had the whole length as perforated pipe, but high groundwater at the north end of this section makes this impossible. The model includes a 3 -foot-tall weir with a 3 -inch-diameter orifice at the bottom between the storage and infiltration pipes even though the pipes have the same invert elevations and diameters. This is necessary in the model only to discourage flow oscillations between the two nodes that cause errors. These components will not be necessary in the constructed system.
The water level in the infiltration and storage pipes is controlled by a weir structure at the end of the infiltration pipe. The weir will hold the water level 3 feet above the invert of the pipe, allowing more water to infiltrate. The weir overflows to a small culvert in the structure that is routed to the system outfall into Squilchuck Creek.

Bypass System

The flow splitter above the Vortechs unit bypasses flows greater than 14 cfs around the pretreatment system to avoid inundating it and causing remobilization of sediment. The bypass joins the infiltration system overflow at the south end of the project side and outfalls to the creek.

A portion of the bypass pipe will be perforated to allow groundwater to enter and be carried to the creek.

Proposed Water Quality and Flow Control Performance

Water quality is addressed by hydrodynamic and oil/water separation in the Vortechs 9000 unit and subsurface infiltration. The Vortechs unit meets pretreatment requirements for the more common
storms and a bypass is provided for larger events. As shown in Table 4.1, the model indicates that peak flows are below the GULD-approved rate of 5 cfs in both the 6 -month Type IA and SDS, meaning all of the runoff from most small storms will be fully pretreated. Furthermore, an appreciable portion of the other storms is pretreated as well, as shown in Figure 4.1.

Given the known depth to groundwater of approximately 12 feet, the coarse-grained soil, and assuming the runoff is moderately polluted, the infiltration system itself could not meet the presumptive approach requirements outlined in section 5.6 .2 of the SMMEW. This, along with the desire for a long-lived system, necessitate pretreatment prior to subsurface infiltration.

The recently installed pond is included in the model as a comparison to the proposed system. Portions of the runoff retained and infiltrated in the proposed perforated pipe system and existing pond are displayed in Figure 4.2.

Figure 4.2: Portions of Runoff Infiltrating in Proposed and Existing Facilities

Flow control is improved by a weir structure at the lower end of the perforated pipe in order to detain stormwater in the pipes and allow greater infiltration. The system will help to delay runoff flows from entering the creek during lower intensity and shorter duration storms. This is especially true for the Type IA storms and the 6-month and 2-year thunderstorms, as these produce little or no flow that bypasses the treatment system (Figure 4.1).

Drawings

Preliminary plans and details are included in Appendix B.

HydroCAD Model

The HydroCAD model output is included in Appendix D.

5. Implementation Recommendation

RH2 Engineering, Inc., (RH2) recommends the system described in Section 4 of this report as it would provide a cost-effective and long-lasting option for improving water quality in Squilchuck Creek. Further geotechnical testing is recommended to fully characterize groundwater in this area prior to construction.

6. Cost Estimate

The preliminary cost estimates for the options presented in Section 4 are detailed in Appendix C and summarized as follows.

1. Installing 75 lineal feet of perforated pipe, 180 feet of storage pipe, and pretreatment system - \$517,000
2. Perforated CMP grid on purchased creekside lot $-\$ 480,000$
3. Using extra capacity in City's new stormwater pond - not a viable option, no cost estimate prepared
4. Replacing the 30 -inch pipe with 36 -inch corrugated polyethylene pipe in the lower basin included in option 1 cost.
5. Placing drywells in the upper basin - approximately $\$ 30,000$ per drywell
6. Placing a detention/infiltration facility on school district lot - unknown at this time, no cost estimate prepared

7. Proposed Schedule

The geotechnical investigation and final design will commence if the project is able to procure funds by a competitive grant for construction in 2015.

8. Appendices

Appendix A - Basin Map
Appendix B - Plans and Details
Appendix C - Cost Estimate Details
Appendix D - Storm Simulation Output
Appendix E - Soils Analysis

Appendices

Appendix A Basin Maps

RH2

Disclaimer: Information contained in for planning purposes only. Accuracy of data of adjacent systems is from best information available. file path: J.|latalWM1208-1421GISIFIigure_1.mxd
last modified by:MIV on $01 / 25 / 14$

Chelan County Public Works Squilchuck Stormwater Outfall Figure 1: Vicinity Map

Legend
Columbia River
Wenatchee City Limits - Streams
Parcels

Appendix B Preliminary Plans

 SQUILCHUCK OUTFALL
$R B 2$
2

EXISTING LEGEND

GENERAL NOTES

\section*{| SITE SPECIFIC |
| :---: |
| DATA REQUIREMENTS |}

STRUCTURE ID	V
WAUTER QUALTY FLOW RATE (CFSS)	0.
PEAK FLOW RATE (CFS)	5.

RETURN PERIOD OF PEAK FLOW (YRS)	2.5
	2.5

PIPE DATA:	I.E.	MATERIAL	DIAMETER
INLET PII	680	CPEP	${ }^{18}$
INLET PIPE 2		-	

INLET PPE 2	-	-	.
OUTLET P	680.69	CPEP	18

ANTIFLOTATION BALLAST	TBD	TBD

NOTESISPECIAL REQUIREMENTS.
${ }^{*}$ Per engineer of record

FRAME AND COVER

(DIAMETER VARIES)
N.T.S.

CENERAL NOTES
or materils uniess noter othrewise

4. VORTECHS WATER QUALITY STRUCOCTURE ESHASLOLL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION
5. CTRUCTURE SHALL MEET AAS

6. CONEIRM ACTUAL GROUNDWATER ELEVATION.
 OUTEE PIPE (S) MUST BE DOWN STREAM OF THE FLOW CNONTROL BAFFLL AND MAY BE LOCATES ON THE SIDE OR END
OF THE VAUTT. MHE FLOW CONTROL WALL MAY BE TUNNED TO ACCOMOATE OUTLET PIPE KNOCKOUTS ON THE SIDE of The vaul

INSTALLATION NOTES A. ANY SUBBASE, BACKFILL DEPTH, ANDIOR ANTI--LOTATION PROVIIIONS ARE SITE-SPECIFIC DESIIGN CONSIIERATIONS B. ANO SHALL BE SPECIFED BY ENGINEER OF RECORD
B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LFT AND SET TI
C. CORTECHS STRUCTURE (LIFTING CLUTCHES PROVIDED).

SECTION A-A

Appendix C Cost Estimate Details

Appendix D
 Storm Simulation Output

Squilchuck Storm - 90\% Design

Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Page 2

Project Notes

Model matches plans at 90% submittal

Squilchuck Storm - 90\% Design

Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	CN	Description (subcatchment-numbers)
$1,812,096$	85	$1 / 8$ acre lots, 65\% imp, HSG B (29S)
$2,465,496$	90	$1 / 8$ acre lots, 65\% imp, HSG C (29S)
$\mathbf{4 , 2 7 7 , 5 9 2}$	$\mathbf{8 8}$	TOTAL AREA

Squilchuck Storm - 90\% Design

Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
$1,812,096$	HSG B	29 S
$2,465,496$	HSG C	29 S
0	HSG D	
0	Other	
$\mathbf{4 , 2 7 7 , 5 9 2}$		TOTAL AREA

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A $(\mathrm{sq}-\mathrm{ft})$	HSG-B $(\mathrm{sq}-\mathrm{ft})$	HSG-C $(\mathrm{sq}-\mathrm{ft})$	HSG-D $(\mathrm{sq}-\mathrm{ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
0	$\mathbf{1 , 8 1 2 , 0 9 6}$	$2,465,496$	0	0	$4,277,592$	$1 / 8$ acre lots,
						65% imp
$\mathbf{0}$	$\mathbf{1 , 8 1 2 , 0 9 6}$	$\mathbf{2 , 4 6 5 , 4 9 6}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4 , 2 7 7 , 5 9 2}$	TOTAL AREA

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	$29 S$	0.00	0.00	$1,400.0$	0.0300	0.025	18.0	0.0	0.0
2	$29 S$	0.00	0.00	$1,300.0$	0.0600	0.025	24.0	0.0	0.0
3	$29 S$	0.00	0.00	$1,300.0$	0.0250	0.025	36.0	0.0	0.0
4	$55 R$	716.80	707.70	250.0	0.0364	0.025	36.0	0.0	0.0
5	31 P	683.52	683.04	36.0	0.0133	0.013	36.0	0.0	0.0
6	31 P	681.17	680.86	37.0	0.0084	0.013	18.0	0.0	0.0
7	33 P	677.79	677.46	17.0	0.0194	0.013	18.0	0.0	0.0
8	$39 R$	683.04	677.73	153.0	0.0347	0.013	36.0	0.0	0.0
9	40 R	672.73	672.05	20.0	0.0340	0.013	36.0	0.0	0.0
10	42 P	671.05	670.47	56.0	0.0104	0.013	48.0	0.0	0.0
11	44 R	670.47	670.08	35.0	0.0111	0.025	48.0	0.0	0.0
12	49 P	690.92	690.00	23.0	0.0400	0.025	18.0	0.0	0.0
13	51 P	708.20	707.00	200.0	0.0060	0.013	6.0	0.0	0.0
14	51 P	707.70	693.32	180.0	0.0799	0.025	36.0	0.0	0.0
15	52 P	686.49	683.52	182.0	0.0163	0.013	36.0	0.0	0.0
16	53 P	690.84	686.42	130.0	0.0340	0.013	36.0	0.0	0.0
17	57 P	680.69	680.39	15.0	0.0200	0.013	18.0	0.0	0.0

Squilchuck Storm - 90\% Design

Prepared by RH2 Engineering, Inc.
Revised 10/22/14 Printed 10/22/2014
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Page 7

Notes Listing (all nodes)

Line\#	Node Number	Notes
1	Project	Model matches plans at 90\% submittal
2	31 P	Sized orifice at 16" to match Contech's documented peak capacity for the Vortech $9000(14$ cfs $)$ in the 100-yr 3-hr SDS.
3	$32 P$	weir not necessary in reality - only used as a baffle to discourage excessive oscillations

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00% Impervious Runoff Depth $=0.00$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff= 0.06 cfs 191 cf

Reach 55R: System Inlet Pipe Avg. Flow Depth=0.07' Max Vel=1.45 fps Inflow=0.06 cfs 191 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \mathrm{S}=0.0364$ '/' Capacity= 66.17 cfs Outflow=0.06 cfs 191 cf

Pond 31P: Bypass Structure
Peak Elev=681.28' Inflow=0.06 cfs 191 cf Primary $=0.06$ cfs 191 cf Secondary= 0.00 cfs 0 cf Outflow= 0.06 cfs 191 cf

Pond 32P: 48" Unperforated Storage Peak Elev=677.97' Storage=0.001 af Inflow=0.06 cfs 191 cf

Pond 33P: 48" Perforated CMP Peak Elev=677.60' Storage=0.001 af Inflow=0.05 cfs 191 cf Discarded $=0.03$ cfs 191 cf Primary $=0.00$ cfs 0 cf Outflow= 0.03 cfs 191 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=683.04' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '/' Outlow=0.00 cfs 0 cf

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=672.73' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0340$ '/' Outflow=0.0 cfs 0 cf

Pond 42P: Flow Converge Structure Peak Elev=671.05' Inflow=0.00 cfs 0 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '//' Outflow=0.00 cfs 0 cf

Pond 44R: 48" CMP Outfall Pipe (Existing)
Peak Elev=670.47' Inflow=0.00 cfs 0 cf 48.0" Round Culvert $\mathrm{n}=0.025 \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=0.0 cfs 0 cf

Pond 49P: Existing (New) Pond
Peak Elev=689.00' Storage=0 cf Inflow=0.00 cfs 0 cf Discarded $=0.00$ cfs 0 cf Primary $=0.00$ cfs 0 cf Outflow= 0.00 cfs 0 cf

Pond 51P: Flow Splitter
Peak Elev=707.86' Inflow=0.06 cfs 191 cf Primary $=0.06$ cfs 191 cf Secondary= 0.00 cfs 0 cf Outflow= 0.06 cfs 191 cf

Pond 52P: Existing MH to be replaced Peak Elev=686.58' Inflow=0.06 cfs 191 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=0.06 cfs 191 cf

Pond 53P: Proposed MH
Peak Elev=690.93' Inflow=0.06 cfs 191 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340 \mathrm{l} / \mathrm{I}$ Outflow=0.06 cfs 191 cf

Pond 57P: Vortech 9000
Peak Elev=680.79' Inflow=0.06 cfs 191 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=0.06 cfs 191 cf

Total Runoff Area $=4,277,592$ sf Runoff Volume $=191$ cf Average Runoff Depth $=0.00^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=0.06$ cfs @ 3.05 hrs, Volume $=191 \mathrm{cf}$, Depth= $0.00^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs E-WA Short 3-hr 0.5 YR SDS Rainfall=0.30"

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ " for 0.5 YR SDS event Inflow $=0.06$ cfs @ 3.05 hrs, Volume $=\quad 191 \mathrm{cf}$ Outflow $=0.06$ cfs @ 3.07 hrs , Volume $=\quad 191 \mathrm{cf}$, Atten= 1%, Lag= 1.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 1.45 fps , Min. Travel Time= 2.9 min
Avg. Velocity $=1.10 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 10 cf @ 3.07 hrs
Average Depth at Peak Storage= 0.07^{\prime}
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.00" for 0.5 YR SDS event
Inflow	0.06 cfs @	3.07 hrs, Volume=	191 cf
Outflow	0.06 cts @	3.07 hrs, Volume=	191 cf, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	0.06 cts @	3.07 hrs, Volume=	191 cf
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.28' @ 3.07 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
Primary OutFlow Max=0.06 cfs @ 3.07 hrs HW=681.28' TW=680.79' (Dynamic Tailwater) ${ }^{4}-3=$ Culvert (Barrel Controls 0.06 cfs @ 1.46 fps)			
	Orifice/Gr	asses 0	6 cfs of 0.07 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=681.17' TW=683.04' (Dynamic Tailwater) L2=Culvert (Controls 0.00 cfs)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00% Impervious,	Inflow Depth $=0.00 "$	for 0.5 YR SDS event
Inflow	$=$	$0.06 \mathrm{cfs} @$	3.07 hrs, Volume $=$	191 cf
Outflow	$=$	$0.05 \mathrm{cfs} @$	3.13 hrs, Volume $=$	191 cf , Atten $=8 \%$, Lag $=3.7 \mathrm{~min}$
Primary	$=$	$0.05 \mathrm{cfs} @$	3.13 hrs, Volume $=$	191 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=677.97' @ 3.13 hrs Surf.Area= 0.007 ac Storage= 0.001 af Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af

Plug-Flow detention time= 12.1 min calculated for 191 of (100% of inflow)
Center-of-Mass det. time= $13.1 \mathrm{~min}(176.8-163.7)$

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=52)

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth =	0.00" for 0.5 YR SDS event
Inflow	0.05 cfs @	3.13 hrs , Volume=	191 cf	
Outflow	0.03 cfs @	3.38 hrs , Volume=	191 cf,	, Atten $=48 \%, L a g=15.2 \mathrm{~min}$
Discarded =	0.03 cfs @	3.38 hrs , Volume=	191 cf	
Primary	0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=677.60' @ 3.38 hrs Surf.Area= 0.011 ac Storage $=0.001$ af Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $17.4 \min (194.2-176.8)$

Discarded OutFlow Max=0.03 cfs @ 3.38 hrs HW=677.60' (Free Discharge)
${ }^{-2} \mathbf{2 = E x f i l t r a t i o n ~ (C o n t r o l s ~} 0.03 \mathrm{cfs}$)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=677.29' TW=671.05' (Dynamic Tailwater)
$1=$ Culvert (Controls 0.00 cfs)
$\mathcal{L}_{3}=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
2,310.0 cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.04' @ 0.00 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=683.04' TW=672.73' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.73' @ 0.00 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.907 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=672.73' TW=671.05' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ " for 0.5 YR SDS event Inflow $=0.00$ cfs @ 0.00 hrs, Volume $=0 \mathrm{cf}$ Outflow $=0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume $=0 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=0.00$ cfs @ 0.00 hrs, Volume $=0 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=671.05' @ 0.00 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=671.05' TW=670.47' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ for 0.5 YR SDS event Inflow $=0.00$ cfs @ 0.00 hrs, Volume $=0 \mathrm{cf}$ Outflow $=0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume $=0 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=0.00$ cfs @ 0.00 hrs, Volume $=0 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=670.47' @ 0.00 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad \mathrm{CMP}$, square edge headwall, Ke $=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=670.47' (Free Discharge)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf
Outflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag= 0.0 min
Discarded	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=689.00' @ 0.00 hrs Surf.Area= 44 sf Storage= 0 cf
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Device	Routing	Invert	Outlet Devices
\#1	Primary	690.92'	18.0" Round Culvert
			$\mathrm{L}=23.0{ }^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=690.92' / 690.00' S=0.0400 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 1.77 sf
\#2	Device 1	694.76'	42.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Discarded	689.00'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=686.00{ }^{\prime}$

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=689.00' (Free Discharge)
$L^{-} 3=$ Exfiltration (Passes 0.00 cfs of 0.00 cfs potential flow)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=689.00' TW=686.49' (Dynamic Tailwater)
$L_{1}=$ Culvert (Controls 0.00 cfs)
${ }^{2} \mathbf{2}=$ Orifice/Grate (Controls 0.00 cfs)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 707.86' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 0.10' @ 3.07 hrs

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth $=0.00$ " for 0.5 YR SDS event
Inflow	0.06 cfs @	3.07 hrs, Volume=	191 cf
Outflow	0.06 cfs @	3.07 hrs , Volume=	191 cf, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	0.06 cfs @	3.07 hrs , Volume=	191 cf
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 707.86' @ 3.07 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.20$ sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime} \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8 ' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.50
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{lllllll} & 3 & 3.25 & 3.29 & 3.32\end{array}$
			3.313 .32

Primary OutFlow Max=0.06 cfs @ 3.07 hrs HW=707.86' TW=690.93' (Dynamic Tailwater)
$\left\llcorner_{2}=\right.$ Culvert (Passes 0.06 cfs of 0.20 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.06 cfs @ 1.37 fps)
4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=707.70' TW=689.00' (Dynamic Tailwater)
$\underbrace{}_{1=C u l v e r t}$ (Controls 0.00 cfs)

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 686.58' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ for 0.5 YR SDS event Inflow $=0.06$ cfs @ 3.07 hrs, Volume $=191$ cf Outflow $=0.06$ cfs @ 3.07 hrs , Volume $=\quad 191 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=\quad 0.06$ cfs @ 3.07 hrs, Volume $=191 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=686.58' @ 3.07 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime \prime \prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=0.06 cfs @ 3.07 hrs HW=686.58' TW=681.28' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{0.06}$ cfs @ 1.00 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 690.93' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ " for 0.5 YR SDS event Inflow $=0.06$ cfs @ 3.07 hrs, Volume $=191$ cf Outflow = 0.06 cfs @ 3.07 hrs , Volume $=\quad 191 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 0.06 cfs @ 3.07 hrs, Volume= 191 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=690.93' @ 3.07 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=0.06 cfs @ 3.07 hrs HW=690.93' TW=686.58' (Dynamic Tailwater)

Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.00$ for 0.5 YR SDS event Inflow $=0.06$ cfs @ 3.07 hrs, Volume $=191 \mathrm{cf}$ Outflow $=0.06$ cfs @ 3.07 hrs , Volume $=\quad 191 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=0.06$ cfs @ 3.07 hrs, Volume $=\quad 191$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=680.79' @ 3.07 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=0.06 cfs @ 3.07 hrs HW=680.79' TW=677.96' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 0.06 cfs @ 1.09 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 29S: Squilchuck Basin \quad Runoff Area $=98.200$ ac 65.00% Impervious Runoff Depth $=0.16$ " Flow Length=4,450' Tc=13.3 $\mathrm{min} \quad \mathrm{CN}=88$ Runoff=1.40 cfs $55,871 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth $=0.30^{\prime} \quad$ Max Vel=3.77 fps Inflow=1.40 cfs $55,871 \mathrm{cf}$ 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0$ ' $\mathrm{S}=0.0364$ '/' Capacity= 66.17 cfs Outflow=1.40 cfs $55,871 \mathrm{cf}$

Pond 31P: Bypass Structure
Peak Elev=681.64' Inflow=0.95 cfs 49,441 cf Primary $=0.95$ cfs 49,441 cf Secondary $=0.00$ cfs 0 cf Outflow= 0.95 cfs 49,441 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.00' Storage=0.044 af Inflow=0.95 cfs 49,441 cf Outflow=0.95 cfs 49,441 cf

Pond 33P: 48" Perforated CMP
Peak Elev=680.95' Storage=0.026 af Inflow=0.95 cfs 49,441 cf Discarded $=0.10$ cfs 8,482 cf Primary $=0.85$ cfs 40,959 cf Outflow $=0.95$ cfs 49,441 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=683.04' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '/' Outflow=0.00 cfs 0 cf

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=672.73' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=0.00 cfs 0 cf

Pond 42P: Flow Converge Structure Peak Elev=671.38' Inflow=0.85 cfs 40,959 cf 48.0" Round Culvert n=0.013 L=56.0' S=0.0104 '/' Outflow=0.85 cfs 40,959 cf

Pond 44R: 48" CMP Outfall Pipe (Existing)
Peak Elev=670.86' Inflow=0.85 cfs 40,959 cf 48.0" Round Culvert $n=0.025$ L=35.0' $\mathrm{S}=0.0111$ '/' Outflow=0.85 cfs $40,959 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.81' Storage=3,609 cf Inflow=0.51 cfs $27,741 \mathrm{cf}$ Discarded $=0.05$ cfs 6,401 cf Primary $=0.44$ cfs 21,311 cf Outflow= $0.50 \mathrm{cfs} 27,712 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=709.30' Inflow=1.40 cfs 55,871 cf Primary=0.89 cfs 28,130 cf Secondary=0.51 cfs 27,741 cf Outflow= 1.40 cfs 55,871 cf

Pond 52P: Existing MH to be replaced Peak Elev=686.84' Inflow=0.95 cfs 49,441 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=0.95 cfs $49,441 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=691.18' Inflow=0.89 cfs 28,130 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=0.89 cfs $28,130 \mathrm{cf}$

Peak Elev=681.21' Inflow=0.95 cfs 49,441 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=0.95 cfs $49,441 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=55,871$ cf Average Runoff Depth $=0.16$ " 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=\quad 1.40$ cfs @ 8.14 hrs, Volume $=55,871 \mathrm{cf}$, Depth $=0.16{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type IA 24-hr 0.5 YR Type IA Rainfall=0.82"

13.3 4,450 Total

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.16 "$ for 0.5 YR Type IA event Inflow $=\quad 1.40$ cfs @ 8.14 hrs, Volume $=\quad 55,871 \mathrm{cf}$ Outflow = 1.40 cfs @ 8.16 hrs , Volume $=\quad 55,871 \mathrm{cf}$, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=3.77 \mathrm{fps}$, Min. Travel Time $=1.1 \mathrm{~min}$
Avg. Velocity $=3.23 \mathrm{fps}$, Avg. Travel Time $=1.3 \mathrm{~min}$
Peak Storage= 93 cf @ 8.16 hrs
Average Depth at Peak Storage= 0.30^{\prime}
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe
 Outflow

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth =	0.14" for 0.5 YR Type IA event
Inflow	0.95 cfs @	10.87 hrs , Volume=	49,441 cf	
Outflow	0.95 cfs @	10.87 hrs , Volume=	49,441 cf	Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary =	0.95 cfs @	10.87 hrs , Volume=	49,441 cf	
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.64' @ 10.87 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	$681.17{ }^{\prime}$	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=1.77 \mathrm{sf}$

Primary OutFlow Max=0.95 cfs @ 10.87 hrs HW=681.64' TW=681.21' (Dynamic Tailwater)
3=Culvert (Outlet Controls 0.95 cfs @ 3.02 fps)
L- $_{1=}$ Orifice/Grate (Passes 0.95 cfs of 1.01 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=681.17' TW=683.04' (Dynamic Tailwater)
—2=Culvert (Controls 0.00 cfs)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014 Page 35

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

| Inflow Area $=$ | $4,277,592$ sf, 65.00% Impervious, | Inflow Depth $=0.14 "$ | for 0.5 YR Type IA event |
| :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.95 \mathrm{cfs} @ 10.87 \mathrm{hrs}$, Volume $=$ | $49,441 \mathrm{cf}$ |
| Outflow | $=$ | $0.95 \mathrm{cfs} @ 10.90 \mathrm{hrs}$, Volume $=$ | $49,441 \mathrm{cf}$, Atten $=0 \%$, Lag $=1.9 \mathrm{~min}$ |
| Primary | $=$ | $0.95 \mathrm{cfs} @ 10.90 \mathrm{hrs}$, Volume $=$ | $49,441 \mathrm{cf}$ |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.00' @ 10.91 hrs Surf.Area= 0.013 ac Storage= 0.044 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=49.3 \mathrm{~min}$ calculated for 49,434 of (100% of inflow)
Center-of-Mass det. time $=49.4 \mathrm{~min}(1,017.8-968.4)$

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area $=$	$4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.14 "$ for 0.5 YR Type IA event		
Inflow $=$	$0.95 \mathrm{cfs} @ 10.90 \mathrm{hrs}$, Volume $=$	$49,441 \mathrm{cf}$	
Outflow	$=$	$0.95 \mathrm{cfs} @ 10.91 \mathrm{hrs}$, Volume $=$	$49,441 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.6 \mathrm{~min}$
Discarded $=$	$0.10 \mathrm{cfs} @ 10.91 \mathrm{hrs}$, Volume $=$	$8,482 \mathrm{cf}$	
Primary	$=$	$0.85 \mathrm{cfs} @ 10.91 \mathrm{hrs}$, Volume $=$	$40,959 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=680.95' @ 10.91 hrs Surf.Area= 0.011 ac Storage= 0.026 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=30.5 \mathrm{~min}$ calculated for 49,434 cf (100% of inflow)
Center-of-Mass det. time $=30.5 \mathrm{~min}(1,048.3-1,017.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	677.29'	0.013 af	$6.00^{\prime} \mathrm{W} \times 77.00{ }^{\prime} \mathrm{L} \times 5.00{ }^{\prime} \mathrm{H}$ Field A
			0.053 af Overall -0.022 af Embedded $=0.031$ af $\times 40.0 \%$ Voids
\#2A	677.79'	0.022 af	CMP_Round 48×4 Inside \#1
			Effective Size $=48.0$ 'W $\times 48.0$ " $\mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
			Overall Size $=48.0 \mathrm{~W}$ W 48.0"H $\times 20.00^{\prime} \mathrm{L}$
			Row Length Adjustment $=-5.00{ }^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
		0.034 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	677.79'	18.0" Round Culvert
			$\mathrm{L}=17.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.79' / 677.46' S=0.0194 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Discarded	677.29'	$2.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 676.25'
\#3	Device 1	680.79'	5.0' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .60 0.80 1.001 .201 .401 .601 .80
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32

Discarded OutFlow Max=0.10 cfs @ 10.91 hrs HW=680.95' (Free Discharge)
L2=Exfiltration (Controls 0.10 cfs)
Primary OutFlow Max=0.85 cfs @ 10.91 hrs HW=680.95' TW=671.38' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.85 cfs of 13.20 cfs potential flow)
$\sum_{3=}$ Broad-Crested Rectangular Weir (Weir Controls 0.85 cfs @ 1.09 fps)

Squilchuck Storm-90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency $=64.4 \%$
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.04' @ 0.00 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=683.04' TW=672.73' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=672.73' @ 0.00 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.907 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=672.73' TW=671.05' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=\quad 4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.11$ " for 0.5 YR Type IA event
Inflow $=0.85$ cfs @ 10.91 hrs, Volume $=\quad 40,959 \mathrm{cf}$
Outflow $=0.85 \mathrm{cfs} @ 10.91 \mathrm{hrs}$, Volume $=\quad 40,959 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=0.85$ cfs @ 10.91 hrs, Volume $=\quad 40,959$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=671.38' @ 10.91 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05'
48.0" Round Culvert
$\mathrm{L}=56.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert=671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=0.85 cfs @ 10.91 hrs HW=671.38' TW=670.86' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.85 cfs @ 2.66 fps)
Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=\quad 4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.11{ }^{\prime \prime}$ for 0.5 YR Type IA event
Inflow $=0.85$ cfs @ 10.91 hrs, Volume $=\quad 40,959 \mathrm{cf}$
Outflow $=0.85 \mathrm{cfs} @ 10.91 \mathrm{hrs}$, Volume $=\quad 40,959 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=0.85$ cfs @ 10.91 hrs, Volume $=\quad 40,959$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=670.86' @ 10.91 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=0.85 cfs @ 10.91 hrs HW=670.86' (Free Discharge)
—1=Culvert (Barrel Controls 0.85 cfs @ 2.06 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.51 \mathrm{cfs} @$	8.16 hrs, Volume $=$	$27,741 \mathrm{cf}$
Outflow	$=$	$0.50 \mathrm{cfs} @$	10.91 hrs, Volume $=$	$27,712 \mathrm{cf}$, Atten $=2 \%$, Lag $=164.9 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	10.91 hrs, Volume $=$	$6,401 \mathrm{cf}$
Primary	$=$	$0.44 \mathrm{cfs} @$	10.91 hrs, Volume $=$	$21,311 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.81' @ 10.91 hrs Surf.Area=1,494 sf Storage=3,609 cf
Plug-Flow detention time= 230.8 min calculated for 27,712 cf (100% of inflow)
Center-of-Mass det. time $=230.3 \mathrm{~min}(1,179.4-949.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Device	Routing	Invert	Outlet Devices
\#1	Primary	690.92'	18.0" Round Culvert
			$\mathrm{L}=23.0{ }^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=690.92' / 690.00' S=0.0400 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 1.77 sf
\#2	Device 1	694.76'	42.0' Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Discarded	689.00'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=686.001$

Discarded OutFlow Max=0.05 cfs @ 10.91 hrs HW=694.81' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.44 cfs @ 10.91 hrs HW=694.81' TW=686.84' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.44 cfs of 14.77 cfs potential flow)
$L_{2=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 0.44 \mathrm{cfs} @ 0.76 \mathrm{fps}$)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 709.30' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.30' @ 8.16 hrs

Inflow Area	4,277,592 s	65.00\% Impervious,	Inflow Depth = 0.16" for 0.5 YR Type IA
Inflow	1.40 cfs @	8.16 hrs, Volume=	55,871 cf
Outflow	1.40 cfs @	8.16 hrs, Volume=	$55,871 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary	0.89 cfs @	8.16 hrs, Volume=	28,130 cf
Secondary =	0.51 cfs @	8.16 hrs, Volume=	27,741 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 709.30' @ 8.16 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Secondary	708.20'	6.0" Round Culvert		
			$\mathrm{L}=200.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 708.20' $/ 707.00^{\prime} \mathrm{S}=0.0060$ '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.20 \mathrm{sf}$		
\#2	Primary	707.70'	36.0" Round Culvert		
			$\mathrm{L}=180.0{ }^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '/' Cc= 0.900		
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf		
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$		
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir		
			2.50		
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{lllllll} & 3.18 & 3.25 & 3.29 & 3.32\end{array}$		
			3.313 .32		
Primary OutFlow Max=0.89 cfs @ 8.16 hrs HW=709.30' TW=691.18' (Dynamic Tailwater) $亡_{2}=$ Culvert (Passes 0.89 cfs of 16.51 cfs potential flow)					
-3=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.76 fps)					
4=Broad-Crested Rectangular Weir (Weir Controls $0.39 \mathrm{cfs} @ 0.87 \mathrm{fps}$)					

Secondary OutFlow Max=0.51 cfs @ 8.16 hrs HW=709.30' TW=691.08' (Dynamic Tailwater)
$\left\llcorner_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 0.51\right.$ cfs @ 2.59 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014
Type IA 24-hr 0.5 YR Type IA Rainfall=0.82"

Pond 51P: Flow Splitter

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 686.84' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.14$ " for 0.5 YR Type IA event Inflow $=0.95$ cfs @ 10.87 hrs, Volume=
Outflow = $0.95 \mathrm{cfs} @ 10.87 \mathrm{hrs}$, Volume= Primary = 0.95 cfs @
10.87 hrs, Volume $=$

49,441 cf
49,441 cf, Atten= 0\%, Lag= 0.0 min 49,441 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=686.84' @ 10.87 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=0.95 cfs @ 10.87 hrs HW=686.84' TW=681.64' (Dynamic Tailwater)
L_1=Culvert (Inlet Controls 0.95 cfs @ 2.02 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 691.18' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.08$ " for 0.5 YR Type IA event Inflow $=0.89$ cfs @ 8.16 hrs , Volume=
Outflow = $0.89 \mathrm{cfs} @ 8.16 \mathrm{hrs}$, Volume= Primary = 0.89 cfs @
8.16 hrs, Volume=

28,130 cf
$28,130 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ 28,130 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=691.18' @ 8.16 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=0.89 cfs @ 8.16 hrs HW=691.18' TW=686.83' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 0.89 cfs @ 1.99 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=\quad 4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.14$ " for 0.5 YR Type IA event
Inflow $=0.95 \mathrm{cfs} @ 10.87 \mathrm{hrs}$, Volume $=49,441 \mathrm{cf}$
Outflow $=0.95 \mathrm{cfs} @ 10.87 \mathrm{hrs}$, Volume $=\quad 49,441 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=0.95$ cfs @ 10.87 hrs, Volume $=\quad 49,441$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.21' @ 10.87 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$\mathbf{1 8 . 0}{ }^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$ '/' $\mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=0.95 cfs @ 10.87 hrs HW=681.21' TW=681.00' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 0.95$ cfs @ 2.59 fps)

| Squilchuck Storm -90\% Design | E-WA Short 3-hr 2 YR SDS Rainfall=0.48" |
| :--- | ---: | :--- |
| Prepared by RH2 Engineering, Inc. | Revised 10/22/14 Printed $10 / 22 / 2014$ |
| HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798 \odot 2013$ HydroCAD Software Solutions LLC | Page 52 |

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth $=0.03$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff=4.27 cfs 9,749 cf

Reach 55R: System Inlet Pipe Avg. Flow Depth $=0.52^{\prime}$ Max Vel=5.26 fps Inflow=4.27 cfs 9,749 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0$ ' $\mathrm{S}=0.0364$ '/' Capacity=66.17 cfs Outflow=4.27 cfs $9,749 \mathrm{cf}$

Pond 31P: Bypass Structure
Peak Elev=682.20' Inflow=3.72 cfs 6,863 cf Primary $=3.72$ cfs 6,863 cf Secondary $=0.00$ cfs 0 cf Outflow=3.72 cfs $6,863 \mathrm{cf}$

Pond 32P: 48" Unperforated Storage Peak Elev=681.15' Storage=0.046 af Inflow=3.72 cfs 6,863 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.06' Storage=0.027 af Inflow=3.22 cfs 6,863 cf Discarded $=0.10$ cfs $3,689 \mathrm{cf}$ Primary=1.98 cfs 3,174 cf Outflow=2.08 cfs 6,863 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=683.04' Inflow=0.00 cfs 0 cf $36.0^{\prime \prime}$ Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '/' Outflow=0.00 cfs 0 cf

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=672.73' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=0.00 cfs 0 cf

Pond 42P: Flow Converge Structure
Peak Elev=671.57' Inflow=1.98 cfs 3,174 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Outflow=1.98 cfs $3,174 \mathrm{cf}$

Pond 44R: 48" CMP Outfall Pipe (Existing)
Peak Elev=671.06' Inflow=1.98 cfs 3,174 cf 48.0" Round Culvert $\mathrm{n}=0.025 \mathrm{~L}=35.0^{\prime} \mathrm{S}=0.0111^{\prime} / \mathrm{l}$ ' Outflow=1.98 cfs $3,174 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.12' Storage=2,669 cf Inflow=0.55 cfs 2,886 cf Discarded $=0.04 \mathrm{cfs} 2,886 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow= $0.04 \mathrm{cfs} 2,886 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=709.60' Inflow=4.27 cfs 9,749 cf Primary $=3.72$ cfs 6,863 cf Secondary $=0.55$ cfs 2,886 cf Outflow= 4.27 cfs 9,749 cf

Pond 52P: Existing MH to be replaced Peak Elev=687.20' Inflow=3.72 cfs 6,863 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '//' Outflow=3.72 cfs $6,863 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=691.55' Inflow=3.72 cfs 6,863 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0$ ' $\mathrm{S}=0.0340$ '//' Outflow=3.72 cfs $6,863 \mathrm{cf}$

Peak Elev=681.65' Inflow=3.72 cfs 6,863 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=3.72 cfs $6,863 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=9,749$ cf Average Runoff Depth $=0.03$ " 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff = 4.27 cfs @ 1.25 hrs, Volume $=9,749 \mathrm{cf}$, Depth= $0.03^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs E-WA Short 3-hr 2 YR SDS Rainfall=0.48"

| Area (ac) | CN | Description |
| ---: | ---: | ---: | ---: | :--- |
| 1.900 | 85 | 1/8 acre lots, 65\% imp, HSG B |
| 39.400 | 85 | $1 / 8$ acre lots, 65\% imp, HSG B |
| 0.300 | 85 | $1 / 8$ acre lots, 65\% imp, HSG B |
| 56.600 | 90 | $1 / 8$ acre lots, 65\% imp, HSG C |

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 0.03" for 2 YR SDS event Inflow $=4.27$ cfs @ 1.25 hrs, Volume $=\quad 9,749 \mathrm{cf}$
Outflow = 4.27 cfs @ 1.26 hrs , Volume $=\quad 9,749 \mathrm{cf}$, Atten= 0%, Lag= 0.5 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=5.26 \mathrm{fps}$, Min. Travel Time $=0.8 \mathrm{~min}$
Avg. Velocity $=2.77 \mathrm{fps}$, Avg. Travel Time $=1.5 \mathrm{~min}$
Peak Storage= 203 cf @ 1.26 hrs
Average Depth at Peak Storage= 0.52^{\prime}
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Inflow

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.02" for 2 YR SDS event
Inflow	3.72 cfs @	1.26 hrs, Volume=	6,863 cf
Outflow	3.72 cfs @	1.26 hrs, Volume=	6,863 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.72 cfs @	1.26 hrs, Volume=	6,863 cf
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=682.20' @ 1.26 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	$681.17{ }^{\prime}$	16.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17	18.0" Round Culvert
			$\mathrm{L}=37.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.72 cfs @ 1.26 hrs HW=682.20' TW=681.65' (Dynamic Tailwater)
3=Culvert (Outlet Controls 3.72 cfs @ 4.05 fps)
$L_{1=O r i f i c e / G r a t e ~(P a s s e s ~} 3.72$ cfs of 4.01 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=681.17' TW=683.04' (Dynamic Tailwater)
—2=Culvert (Controls 0.00 cfs)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

Inflow Area $=$	$4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.02 "$	for 2 YR SDS event		
Inflow	$=$	$3.72 \mathrm{cfs} @$	1.26 hrs , Volume $=$	$6,863 \mathrm{cf}$
Outflow	$=$	$3.22 \mathrm{cfs} @$	1.33 hrs , Volume $=$	$6,863 \mathrm{cf}$, Atten $=13 \%$, Lag $=4.6 \mathrm{~min}$
Primary	$=$	$3.22 \mathrm{cfs} @$	1.33 hrs , Volume $=$	$6,863 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.15' @ 1.43 hrs Surf.Area= 0.012 ac Storage $=0.046$ af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=123.3 \mathrm{~min}$ calculated for 6,862 of (100% of inflow)
Center-of-Mass det. time= 123.4 min (225.0-101.6)

Pond 32P: 48" Unperforated Storage

| Squilchuck Storm -90\% Design | E-WA Short 3-hr 2 YR SDS Rainfall=0.48" |
| :--- | ---: | :--- |
| Prepared by RH2 Engineering, Inc. | Revised $10 / 22 / 14$ Printed $10 / 22 / 2014$ |
| HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798 ~ © 2013 ~ H y d r o C A D ~ S o f t w a r e ~ S o l u t i o n s ~ L L C ~$ | Page 60 |

Summary for Pond 33P: 48" Perforated CMP

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.06' @ 1.43 hrs Surf.Area= 0.011 ac Storage= 0.027 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=82.4 \mathrm{~min}$ calculated for $6,862 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $82.4 \mathrm{~min}(307.4-225.0)$

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.04' @ 0.00 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=683.04' TW=672.73' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.73' @ 0.00 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.907 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=672.73' TW=671.05' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.01$ " for 2 YR SDS event
Inflow $=1.98$ cfs @ 1.43 hrs, Volume $=3,174 \mathrm{cf}$
Outflow $=1.98 \mathrm{cfs} @ 1.43 \mathrm{hrs}$, Volume $=\quad 3,174 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=1.98$ cfs @ 1.43 hrs, Volume $=\quad 3,174$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=671.57' @ 1.43 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=1.97 cfs @ 1.43 hrs HW=671.57' TW=671.06' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{1.97}$ cfs @ 3.16 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.01$ " for 2 YR SDS event
Inflow $=1.98 \mathrm{cfs} @ 1.43 \mathrm{hrs}$, Volume $=3,174 \mathrm{cf}$
Outflow $=1.98 \mathrm{cfs} @ 1.43 \mathrm{hrs}$, Volume $=\quad 3,174 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=1.98$ cfs @ 1.43 hrs, Volume $=\quad 3,174 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=671.06' @ 1.43 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=1.97 cfs @ 1.43 hrs HW=671.06' (Free Discharge)
—1=Culvert (Barrel Controls 1.97 cfs @ 2.62 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.55 \mathrm{cfs} @$	1.26 hrs, Volume $=$	$2,886 \mathrm{cf}$
Outflow	$=$	$0.04 \mathrm{cfs} @$	3.21 hrs, Volume $=$	$2,886 \mathrm{cf}$, Atten $=92 \%$, Lag $=116.9 \mathrm{~min}$
Discarded	$=$	$0.04 \mathrm{cfs} @$	3.21 hrs, Volume $=$	$2,886 \mathrm{cf}$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.12' @ 3.21 hrs Surf.Area=1,222 sf Storage= 2,669 cf
Plug-Flow detention time= 837.3 min calculated for 2,886 cf (100% of inflow)
Center-of-Mass det. time $=837.5 \mathrm{~min}$ (954.7-117.2)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Device	Routing	Invert	Outlet Devices
\#1	Primary	690.92'	18.0" Round Culvert
			$\mathrm{L}=23.0{ }^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=690.92' / 690.00' S=0.0400 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 1.77 sf
\#2	Device 1	694.76'	42.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Discarded	689.00'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=686.00{ }^{\prime}$

Discarded OutFlow Max=0.04 cfs @ 3.21 hrs HW=694.12' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.04$ cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=689.00' TW=686.49' (Dynamic Tailwater)
$L_{1}=$ Culvert (Controls 0.00 cfs)
$\mathcal{L}_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 709.60' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.38' @ 1.26 hrs

Inflow Area	4,277,592 sf,	\% Impervious,	Inflow Depth = 0.03" for 2 YR SDS event
Inflow	4.27 cfs @	1.26 hrs, Volume=	9,749 cf
Outflow	4.27 cfs @	1.26 hrs, Volume=	9,749 cf, Atten= 0\%, Lag= 0.0 min
Primary	3.72 cfs @	1.26 hrs, Volume=	6,863 cf
Secondary =	0.55 cfs @	1.26 hrs, Volume=	2,886 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 709.60' @ 1.26 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Secondary	708.20'	6.0" Round Culvert		
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 708.20' $/ 707.00 ' \mathrm{~S}=0.0060$ '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf		
\#2	Primary	707.70'	36.0" Round Culvert		
			$\mathrm{L}=180.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900		
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=7.07 \mathrm{sf}$		
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$		
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir		
			Head (feet) $0.200 .400 .600 .801 .001 .201 .401 .601 .80 ~ 2.00 ~$		
			2.50		
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{llllllll} & 3.18 & 3.29 & 3.32\end{array}$		
			3.313 .32		
Primary OutFlow Max=3.72 cfs @ 1.26 hrs HW=709.60' TW=691.55' (Dynamic Tailwater) 					
-3=Orifice/Grate (Orifice Controls 0.55 cfs @ 6.34 fps)					

Secondary OutFlow Max=0.55 cfs @ 1.26 hrs HW=709.60' TW=690.91' (Dynamic Tailwater)
—1 $_{1=\text { Culvert }}$ (Barrel Controls 0.55 cfs @ 2.79 fps)

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 687.20' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.02$ for 2 YR SDS event Inflow $=3.72$ cfs @ 1.26 hrs, Volume $=\quad 6,863 \mathrm{cf}$
Outflow = $3.72 \mathrm{cfs} @ 1.26 \mathrm{hrs}$, Volume $=\quad 6,863 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
3.72 cfs @ 1.26 hrs, Volume=

6,863 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=687.20' @ 1.26 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=3.72 cfs @ 1.26 hrs HW=687.20' TW=682.20' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.72 cfs @ 2.88 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 691.55' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.02$ for 2 YR SDS event Inflow $=3.72$ cfs @ 1.26 hrs, Volume $=\quad 6,863 \mathrm{cf}$
Outflow = 3.72 cfs @ 1.26 hrs , Volume $=\quad 6,863 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
3.72 cfs @ 1.26 hrs, Volume=

6,863 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=691.55' @ 1.26 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=3.72 cfs @ 1.26 hrs HW=691.55' TW=687.20' (Dynamic Tailwater)
L1 $_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 3.72$ cfs @ 2.88 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.02$ for 2 YR SDS event Inflow $=3.72$ cfs @ 1.26 hrs, Volume $=6,863 \mathrm{cf}$ Outflow $=3.72$ cfs @ 1.26 hrs , Volume $=\quad 6,863 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=3.72$ cfs @ 1.26 hrs, Volume $=\quad 6,863 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=681.65' @ 1.26 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$\mathbf{1 8 . 0}{ }^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet $/$ Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \quad \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=1.77 \mathrm{sf}$	

Primary OutFlow Max=3.72 cfs @ 1.26 hrs HW=681.65' TW=680.27' (Dynamic Tailwater)
$\mathcal{L 1}_{1=C u l v e r t}$ (Barrel Controls 3.72 cfs @ 4.42 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00% Impervious Runoff Depth $=0.40$ " Flow Length=4,450' $\mathrm{Tc}=13.3 \mathrm{~min} \mathrm{CN}=88$ Runoff=$=7.15 \mathrm{cfs} 143,084 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth $=0.67^{\prime}$ Max Vel=6.12 fps Inflow=7.15 cfs $143,084 \mathrm{cf}$ 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0$ ' $\mathrm{S}=0.0364$ '// Capacity=66.17 cfs Outflow=7.14 cfs $143,084 \mathrm{cf}$

Pond 31P: Bypass Structure
Peak Elev=683.11' Inflow=6.57 cfs 136,474 cf Primary= 6.57 cfs 136,474 cf Secondary= 0.00 cfs 0 cf Outflow= 6.57 cfs 136,474 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.56' Storage=0.050 af Inflow=6.57 cfs 136,474 cf Outflow=6.56 cfs 136,474 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.38' Storage=0.030 af Inflow=6.56 cfs 136,474 cf Discarded= 0.11 cfs 9,090 cf Primary $=6.45$ cfs 127,383 cf Outflow=6.56 cfs 136,474 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=683.04' Inflow=0.00 cfs 0 cf $36.0^{\prime \prime}$ Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0^{\prime} \mathrm{S}=0.0347$ '//' Outflow=0.00 cfs 0 cf

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=672.73' Inflow=0.00 cfs 0 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=0.00 cfs 0 cf

Pond 42P: Flow Converge Structure Peak Elev=672.06' Inflow=6.45 cfs 127,383 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Outflow=6.45 cfs $127,383 \mathrm{cf}$

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=671.53' Inflow=6.45 cfs 127,383 cf 48.0" Round Culvert $\mathrm{n}=0.025 \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=6.45 cfs $127,383 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,614 cf Inflow=0.57 cfs 32,234 cf Discarded $=0.05$ cfs $6,581 \mathrm{cf}$ Primary $=0.48 \mathrm{cfs} 25,624 \mathrm{cf}$ Outflow $=0.54 \mathrm{cfs} 32,204 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=709.80' Inflow=7.14 cfs 143,084 cf Primary $=6.57$ cfs 110,850 cf Secondary= 0.57 cfs 32,234 cf Oufflow=7.14 cfs 143,084 cf

Pond 52P: Existing MH to be replaced Peak Elev=687.45' Inflow=6.57 cfs 136,474 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '//' Outflow=6.57 cfs $136,474 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=691.80' Inflow=6.57 cfs 110,850 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Outflow=6.57 cfs $110,850 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=682.16' Inflow=6.57 cfs 136,474 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200 \mathrm{l} / \mathrm{l}$ ' Outflow=6.57 cfs $136,474 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=143,084$ cf Average Runoff Depth $=0.40^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=7.15 \mathrm{cfs} @ 8.08 \mathrm{hrs}$, Volume $=143,084 \mathrm{cf}$, Depth $=0.40^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type IA 24-hr 2 YR Type IA Rainfall=1.24"

13.3 4,450 Total

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.40$ for 2 YR Type IA event Inflow $=7.15$ cfs @ 8.08 hrs, Volume $=143,084$ cf Outflow $=7.14$ cfs @ 8.09 hrs , Volume $=143,084 \mathrm{cf}$, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=6.12 \mathrm{fps}$, Min. Travel Time $=0.7 \mathrm{~min}$
Avg. Velocity $=4.09 \mathrm{fps}$, Avg. Travel Time $=1.0 \mathrm{~min}$
Peak Storage= 292 cf @ 8.09 hrs
Average Depth at Peak Storage= 0.67^{\prime}
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

\square Inflow \square Outflow

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00% Impervious,	Inflow Depth $=0.38 "$	for 2 YR Type IA event
Inflow	$=$	$6.57 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$136,474 \mathrm{cf}$
Outflow	$=$	$6.57 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$136,474 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$6.57 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$136,474 \mathrm{cf}$
Secondary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.11' @ 8.09 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
Primary OutFlow Max=6.56 cfs @ 8.09 hrs HW=683.11' TW=682.16' (Dynamic Tailwater) $\leftarrow_{3}=$ Culvert (Passes 6.56 cfs of 8.31 cfs potential flow)			

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=681.17' TW=683.04' (Dynamic Tailwater) L2=Culvert (Controls 0.00 cfs)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

Inflow Area $=$	$4,277,592 \mathrm{sf}, 65.00 \%$ Impervious,	Inflow Depth $=0.38 "$	for 2 YR Type IA event	
Inflow	$=$	$6.57 \mathrm{cfs} @$	8.09 hrs , Volume $=$	$136,474 \mathrm{cf}$
Outflow	$=$	$6.56 \mathrm{cfs} @$	8.09 hrs , Volume $=$	$136,474 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.4 \mathrm{~min}$
Primary	$=$	$6.56 \mathrm{cfs} @$	8.09 hrs , Volume $=$	$136,474 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.56' @ 8.09 hrs Surf.Area= 0.008 ac Storage= 0.050 af Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af

Plug-Flow detention time $=19.4$ min calculated for 136,455 cf (100% of inflow)
Center-of-Mass det. time= $19.5 \mathrm{~min}(899.2-879.7)$

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth $=0.38$ " for 2 YR Type IA event
Inflow	6.56 cfs @	8.09 hrs , Volume=	136,474 cf
Outflow	6.56 cfs @	8.10 hrs , Volume=	136,474 cf, Atten $=0 \%$, Lag $=0.3 \mathrm{~min}$
Discarded =	0.11 cfs @	8.10 hrs , Volume=	9,090 cf
Primary	6.45 cfs @	8.10 hrs , Volume=	127,383 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.38' @ 8.10 hrs Surf.Area= 0.011 ac Storage= 0.030 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=12.0 \mathrm{~min}$ calculated for $136,455 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $12.0 \mathrm{~min}(911.2-899.2)$

Discarded OutFlow Max=0.11 cfs @ 8.10 hrs HW=681.38' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=6.45 cfs @ 8.10 hrs HW=681.38' TW=672.06' (Dynamic Tailwater)
-1 $=$ Culvert (Passes 6.45 cfs of 14.34 cfs potential flow)
$\underbrace{}_{3=}$ Broad-Crested Rectangular Weir (Weir Controls 6.45 cfs @ 2.19 fps)

Squilchuck Storm-90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0$ " $\mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= -5.00 x $12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length +12.0" End Stone x 2 = 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x 2 = 6.00' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.04' @ 0.00 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=683.04' TW=672.73' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow	$=$	0 cf	
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
$\mathrm{cfs} @$	0.00 hrs, Volume $=$	0 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.73' @ 0.00 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.907 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=672.73' TW=671.05' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area		$4,277,592$ sf,	65.00%	Impervious,
Inflow	$=$	$6.45 \mathrm{cfs} @$	8.10 hrs , Volume $=$	$127,383 \mathrm{cf}$
Outflow	$=$	$6.45 \mathrm{cfs} @$	8.10 hrs , Volume $=$	$127,383 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$6.45 \mathrm{cfs} @$	8.10 hrs, Volume $=$	$127,383 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.06' @ 8.10 hrs
Flood Elev= 682.09'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	671.05^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $671.05^{\prime} / 670.47 \prime \quad \mathrm{~S}=0.0104{ }^{\prime \prime} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013^{\prime}$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf	

Primary OutFlow Max=6.45 cfs @ 8.10 hrs HW=672.06' TW=671.53' (Dynamic Tailwater)
$\left\llcorner_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 6.45\right.$ cfs @ 3.88 fps)
Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.36$ " for 2 YR Type IA event
Inflow =
8.10 hrs , Volume=

127,383 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=671.53' @ 8.10 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=6.45 cfs @ 8.10 hrs HW=671.53' (Free Discharge)
$\left\llcorner_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 6.45\right.$ cfs @ 3.63 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.57 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$32,234 \mathrm{cf}$
Outflow	$=$	$0.54 \mathrm{cfs} @$	9.29 hrs, Volume $=$	$32,204 \mathrm{cf}$, Atten $=7 \%$, Lag $=72.3 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	9.29 hrs, Volume $=$	$6,581 \mathrm{cf}$
Primary	$=$	$0.48 \mathrm{cfs} @$	9.29 hrs, Volume $=$	$25,624 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 9.29 hrs Surf.Area= 1,496 sf Storage=3,614 cf
Plug-Flow detention time= 205.1 min calculated for 32,204 cf (100\% of inflow)
Center-of-Mass det. time= $204.6 \mathrm{~min}(1,141.1-936.5$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 9.29 hrs HW=694.82' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.48 cfs @ 9.29 hrs HW=694.82' TW=687.13' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.48 cfs of 14.77 cfs potential flow)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Pond 49P: Existing (New) Pond
Hydrograph

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 709.80' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.43' @ 8.09 hrs
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.40$ for 2 YR Type IA event
Inflow $=7.14$ cfs @ 8.09 hrs, Volume $=\quad 143,084$ cf
Outflow $=7.14$ cfs @ 8.09 hrs , Volume $=143,084 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=\quad 6.57$ cfs @ 8.09 hrs, Volume $=\quad 110,850 \mathrm{cf}$
Secondary $=\quad 0.57$ cfs @ 8.09 hrs, Volume $=\quad 32,234$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 709.80' @ 8.09 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime} \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8 ' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32

Primary OutFlow Max=6.57 cfs @ 8.09 hrs HW=709.80' TW=691.80' (Dynamic Tailwater)
${ }^{-2}$ 2 Culvert (Passes 6.57 cfs of 26.08 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.58 cfs @ 6.69 fps)
4=Broad-Crested Rectangular Weir (Weir Controls 5.98 cfs @ 2.22 fps)
Secondary OutFlow Max=0.57 cfs @ 8.09 hrs HW=709.80' TW=693.27' (Dynamic Tailwater)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014

Pond 51P: Flow Splitter
Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 687.45' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 0.38" for 2 YR Type IA event Inflow $=\quad 6.57$ cfs @ 8.09 hrs, Volume $=136,474$ cf
Outflow $=\quad 6.57 \mathrm{cfs} @ 8.09 \mathrm{hrs}$, Volume $=136,474 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
6.57 cfs @ 8.09 hrs, Volume=

136,474 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=687.45' @ 8.09 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=6.57 cfs @ 8.09 hrs HW=687.45' TW=683.11' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 6.57 cfs @ 3.34 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 691.80' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.31 "$ for 2 YR Type IA event Inflow $=\quad 6.57$ cfs @ 8.09 hrs, Volume $=110,850 \mathrm{cf}$
Outflow $=\quad 6.57$ cfs @ 8.09 hrs , Volume $=110,850 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary =
6.57 cfs @ 8.09 hrs, Volume=

110,850 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=691.80' @ 8.09 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=6.57 cfs @ 8.09 hrs HW=691.80' TW=687.45' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 6.57 cfs @ 3.34 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.38$ " for 2 YR Type IA event
Inflow $=6.57$ cfs @ 8.09 hrs, Volume $=136,474$ cf
Outflow $=\quad 6.57$ cfs @ 8.09 hrs , Volume $=\quad 136,474 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=\quad 6.57$ cfs @ 8.09 hrs, Volume $=136,474 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=682.16' @ 8.09 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=6.57 cfs @ 8.09 hrs HW=682.16' TW=681.55' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 6.57 cfs @ 3.74 fps)
Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00% Impervious Runoff Depth $=0.13$ " Flow Length=4,450' $\mathrm{Tc}=13.3 \mathrm{~min} \quad \mathrm{CN}=88$ Runoff= $25.35 \mathrm{cfs} 45,727 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=1.29' Max Vel=8.74 fps Inflow=25.35 cfs 45,727 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0$ ' $\mathrm{S}=0.0364$ '//' Capacity=66.17 cfs Outflow=25.31 cfs $45,727 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=685.25' Inflow=24.64 cfs 41,879 cf Primary= 9.86 cfs 29,106 cf Secondary=14.82 cfs 12,773 cf Outflow=24.64 cfs 41,879 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.77' Storage=0.052 af Inflow=9.86 cfs 29,106 cf Outflow=10.15 cfs 29,106 cf

Pond 33P: 48" Perforated CMP
Peak Elev=681.55' Storage=0.031 af Inflow=10.15 cfs 29,106 cf Discarded $=0.11$ cfs 3,831 cf Primary $=9.76$ cfs 25,276 cf Outflow=9.87 cfs 29,106 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=684.54' Inflow=14.82 cfs $12,773 \mathrm{cf}$ 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=14.82 cfs $12,773 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=674.25' Inflow=14.82 cfs 12,773 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340 \mathrm{l} / \mathrm{\prime}$ Outflow=14.82 cfs $12,773 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=673.30' Inflow=24.54 cfs 38,049 cf 48.0 " Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Outflow=24.54 cfs $38,049 \mathrm{cf}$

Pond 44R: 48" CMP Outfall Pipe (Existing)

Peak Elev=672.63' Inflow=24.54 cfs 38,049 cf 48.0" Round Culvert $\mathrm{n}=0.025 \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=24.54 cfs $38,049 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,612 cf Inflow=0.67 cfs 4,519 cf Discarded= $0.05 \mathrm{cfs} 3,848 \mathrm{cf}$ Primary $=0.47 \mathrm{cfs} 670 \mathrm{cf}$ Outflow=$=0.52 \mathrm{cfs} 4,519 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=710.59' Inflow=25.31 cfs 45,727 cf Primary $=24.64$ cfs 41,209 cf Secondary $=0.67$ cfs 4,519 cf Outflow=25.31 cfs 45,727 cf

Pond 52P: Existing MH to be replaced Peak Elev=688.52' Inflow=24.64 cfs 41,879 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '//' Outflow=24.64 cfs $41,879 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=692.87' Inflow=24.64 cfs 41,209 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Outflow=24.64 cfs $41,209 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=683.11' Inflow=9.86 cfs 29,106 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=9.86 cfs 29,106 cf

Total Runoff Area $=4,277,592$ sf Runoff Volume $=45,727$ cf Average Runoff Depth $=0.13^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=25.35$ cfs @ 1.17 hrs, Volume $=45,727 \mathrm{cf}$, Depth $=0.13^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs E-WA Short 3-hr 10 YR SDS Rainfall=0.76"

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.13$ " for 10 YR SDS event Inflow $=25.35$ cfs @ 1.17 hrs, Volume $=\quad 45,727 \mathrm{cf}$ Outflow = $25.31 \mathrm{cfs} @ 1.18 \mathrm{hrs}$, Volume $=\quad 45,727 \mathrm{cf}$, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=8.74 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=4.02 \mathrm{fps}$, Avg. Travel Time $=1.0 \mathrm{~min}$
Peak Storage= 724 cf @ 1.18 hrs
Average Depth at Peak Storage= 1.29'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=685.25' @ 1.17 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	$681.17{ }^{\prime}$	18.0" Round Culvert
			$\mathrm{L}=37.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=9.84 cfs @ 1.18 hrs HW=685.25' TW=683.11' (Dynamic Tailwater)
3=Culvert (Passes 9.84 cfs of 12.46 cfs potential flow)
$L_{1=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 9.84$ cfs @ 7.05 fps)
Secondary OutFlow Max=14.78 cfs @ 1.17 hrs HW=685.25' TW=684.54' (Dynamic Tailwater)
—2=Culvert (Outlet Controls 14.78 cfs @ 5.04 fps)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.08$ " for 10 YR SDS event
Inflow $=9.86$ cfs @ 1.18 hrs, Volume $=\quad 29,106 \mathrm{cf}$
Outflow $=10.15 \mathrm{cfs} @ 1.13 \mathrm{hrs}$, Volume $=\quad 29,106 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=10.15$ cfs @ 1.13 hrs, Volume $=\quad 29,106$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.77' @ 1.17 hrs Surf.Area= 0.002 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=30.8 \mathrm{~min}$ calculated for 29,102 of (100% of inflow)
Center-of-Mass det. time= $30.9 \mathrm{~min}(131.4-100.5$)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014

Pond 32P: 48" Unperforated Storage

\square Inflow \square Primary

| Squilchuck Storm -90\% Design | E-WA Short 3-hr 10 YR SDS Rainfall=0.76" |
| :--- | ---: | :--- |
| Prepared by RH2 Engineering, Inc. | Revised 10/22/14 Printed $10 / 22 / 2014$ |
| HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798 ~ © 2013$ HydroCAD Software Solutions LLC | Page 104 |

Summary for Pond 33P: 48" Perforated CMP

| Inflow Area $=$ | $4,277,592 \mathrm{sf}$, | 65.00% | Impervious, | Inflow Depth $=0.08 "$ for 10 YR SDS event |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $10.15 \mathrm{cfs} @$ | 1.13 hrs, Volume $=$ | $29,106 \mathrm{cf}$ |
| Outflow | $=$ | $9.87 \mathrm{cfs} @$ | 1.18 hrs, Volume $=$ | $29,106 \mathrm{cf}$, Atten $=3 \%$, Lag $=2.9 \mathrm{~min}$ |
| Discarded | $=$ | $0.11 \mathrm{cfs} @$ | 1.18 hrs, Volume $=$ | $3,831 \mathrm{cf}$ |
| Primary | $=$ | $9.76 \mathrm{cfs} @$ | 1.18 hrs , Volume $=$ | $25,276 \mathrm{cf}$ |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.55' @ 1.18 hrs Surf.Area= 0.011 ac Storage= 0.031 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=20.6 \mathrm{~min}$ calculated for 29,102 cf (100% of inflow)
Center-of-Mass det. time= $20.6 \min (152.0-131.4$)

Discarded OutFlow Max=0.11 cfs @ 1.18 hrs HW=681.55' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=9.76 cfs @ 1.18 hrs HW=681.55' TW=673.30' (Dynamic Tailwater)
L1=Culvert (Passes 9.76 cfs of 14.75 cfs potential flow)
$\underbrace{}_{3=}$ Broad-Crested Rectangular Weir (Weir Controls 9.76 cfs @ 2.58 fps)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size=48.0"W x 48.0"H => $12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2$ = 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$14.82 \mathrm{cfs} @$	1.17 hrs, Volume $=$
Outflow	$=$	$14.82 \mathrm{cfs} @$	1.17 hrs, Volume $=$
Primary	$=$	14.82 cfs @	1.17 hrs, Volume $=$
	$12,773 \mathrm{cf}, \mathrm{cf}$		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=684.54' @ 1.17 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=14.79 cfs @ 1.17 hrs HW=684.54' TW=674.25' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{14.79}$ cfs @ 4.17 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$14.82 \mathrm{cfs} @$	1.17 hrs, Volume $=$
Outflow	$=$	$14.82 \mathrm{cfs} @$	1.17 hrs, Volume $=$
Primary	$=$	14.82 cfs @	1.17 hrs, Volume $=$
	$12,773 \mathrm{cf}, \mathrm{cf}$		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.25' @ 1.18 hrs
Flood Elev=687.57'

Primary OutFlow Max=14.79 cfs @ 1.17 hrs HW=674.25' TW=673.30' (Dynamic Tailwater)

Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.11^{\prime \prime}$ for 10 YR SDS event
Inflow $=24.54$ cfs @ 1.18 hrs, Volume $=38,049 \mathrm{cf}$
Outflow $=24.54$ cfs @ 1.18 hrs , Volume $=38,049 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=24.54$ cfs @ 1.18 hrs, Volume $=38,049 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=673.30' @ 1.18 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=24.52 cfs @ 1.18 hrs HW=673.30' TW=672.63' (Dynamic Tailwater)
L1 2 Culvert (Outlet Controls 24.52 cfs @ 4.86 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=\quad 4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.11^{\prime \prime}$ for 10 YR SDS event
Inflow $=24.54$ cfs @ 1.18 hrs, Volume $=38,049 \mathrm{cf}$
Outflow = 24.54 cfs @ 1.18 hrs , Volume $=\quad 38,049 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=24.54$ cfs @ 1.18 hrs, Volume $=38,049 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=672.63' @ 1.18 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.01111^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	

Primary OutFlow Max=24.52 cfs @ 1.18 hrs HW=672.63' (Free Discharge)
L-1=Culvert (Barrel Controls 24.52 cfs @ 5.13 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.67 \mathrm{cfs} @$	1.18 hrs, Volume $=$	$4,519 \mathrm{cf}$
Outflow	$=$	$0.52 \mathrm{cfs} @$	3.08 hrs, Volume $=$	$4,519 \mathrm{cf}$, , Atten $=22 \%$, Lag $=114.0 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	3.08 hrs, Volume $=$	$3,848 \mathrm{cf}$
Primary	$=$	$0.47 \mathrm{cfs} @$	3.08 hrs, Volume $=$	670 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 3.08 hrs Surf.Area= 1,495 sf Storage= 3,612 cf
Plug-Flow detention time $=773.9 \mathrm{~min}$ calculated for 4,518 of (100% of inflow)
Center-of-Mass det. time= 774.3 min (898.0-123.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 3.08 hrs HW=694.82' (Free Discharge)
$\leftarrow_{3=\text { Exfiltration (Controls } 0.05 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=0.47 cfs @ 3.08 hrs HW=694.82' TW=686.98' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.47 cfs of 14.77 cfs potential flow)
$\mathcal{L}_{2}=$ Orifice/Grate (Weir Controls $0.47 \mathrm{cfs} @ 0.77 \mathrm{fps}$)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 710.59' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.60' @ 1.18 hrs

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.13"
Inflow	25.31 cfs @	1.18 hrs, Volume=	45,727 cf
Outflow	25.31 cfs @	1.18 hrs, Volume=	$45,727 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary =	24.64 cfs @	1.18 hrs, Volume=	41,209 cf
Secondary =	0.67 cfs @	1.18 hrs, Volume=	$4,519 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 710.59' @ 1.18 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) $\begin{array}{llllllllllll} \\ 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}$
			2.50
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{lllllll} & 3.18 & 3.25 & 3.29 & 3.32\end{array}$
			3.313 .32

Primary OutFlow Max=24.63 cfs @ $1.18 \mathrm{hrs} \mathrm{HW}=710.59^{\prime}$ TW=692.87' (Dynamic Tailwater)
$\left\llcorner_{2}=\right.$ Culvert (Passes 24.63 cfs of 40.43 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.69 cfs @ 7.95 fps)
4=Broad-Crested Rectangular Weir (Weir Controls 23.93 cfs @ 3.83 fps)
Secondary OutFlow Max=0.67 cfs @ 1.18 hrs HW=710.59' TW=691.24' (Dynamic Tailwater)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 688.52' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth $=0.12$ " for 10 YR SDS event Inflow $=24.64$ cfs @ 1.18 hrs, Volume $=\quad 41,879 \mathrm{cf}$
Outflow = $24.64 \mathrm{cfs} @ 1.18 \mathrm{hrs}$, Volume $=\quad 41,879 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=24.64$ cfs @ 1.18 hrs, Volume $=$ 41,879 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=688.52' @ 1.18 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=24.63 cfs @ 1.18 hrs HW=688.52' TW=685.25' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 24.63 cfs @ 4.85 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 692.87' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.12$ " for 10 YR SDS event Inflow $=24.64$ cfs @ 1.18 hrs, Volume $=\quad 41,209 \mathrm{cf}$
Outflow = $24.64 \mathrm{cfs} @ 1.18 \mathrm{hrs}$, Volume $=\quad 41,209 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=24.64$ cfs @ 1.18 hrs , Volume= 41,209 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=692.87' @ 1.18 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=24.63 cfs @ 1.18 hrs HW=692.87' TW=688.52' (Dynamic Tailwater)

Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.08$ " for 10 YR SDS event
Inflow $=9.86$ cfs @ 1.18 hrs, Volume $=\quad 29,106$ cf
Outflow = $9.86 \mathrm{cfs} @ 1.18 \mathrm{hrs}$, Volume $=\quad 29,106 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=9.86$ cfs @ 1.18 hrs, Volume $=\quad 29,106$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=683.11' @ 1.18 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=9.86 cfs @ 1.18 hrs HW=683.11' TW=681.77' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 9.86 cfs @ 5.58 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth=0.81" Flow Length=4,450' Tc=13.3 min CN=88 Runoff=17.40 cfs $287,619 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=1.05' Max Vel=7.89 fps Inflow=17.40 cfs 287,619 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '// Capacity= 66.17 cfs Outflow=17.39 cfs $287,619 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=684.74' Inflow=17.34 cfs 280,736 cf Primary $=9.15$ cfs 265,909 cf Secondary= 8.19 cfs 14,827 cf Outflow=17.34 cfs 280,736 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.73' Storage=0.051 af Inflow=9.15 cfs 265,909 cf Outflow=9.15 cfs 265,909 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.51' Storage=0.030 af Inflow=9.15 cfs 265,909 cf Discarded $=0.11$ cfs 9,754 cf Primary $=9.04$ cfs 256,156 cf Outflow=9.15 cfs 265,910 cf

Pond 39R: 36" Smooth PE Bypass Pipe

Peak Elev=684.13' Inflow=8.19 cfs 14,827 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '/' Outflow=8.19 cfs $14,827 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=673.82' Inflow=8.19 cfs 14,827 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=8.19 cfs $14,827 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=672.87' Inflow=17.23 cfs 270,982 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Outflow=17.23 cfs 270,982 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=672.25' Inflow=17.23 cfs 270,982 cf 48.0" Round Culvert $n=0.025$ L=35.0' $\mathrm{S}=0.0111$ '/' Outflow=17.23 cfs 270,982 cf

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,625 cf Inflow=0.63 cfs 36,526 cf Discarded $=0.05$ cfs $6,852 \mathrm{cf}$ Primary $=0.58$ cfs 29,644 cf Outflow $=0.63 \mathrm{cfs} 36,496 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=710.29' Inflow=17.39 cfs 287,619 cf Primary=16.76 cfs 251,092 cf Secondary=0.63 cfs 36,526 cf Outflow=17.39 cfs 287,619 cf

Pond 52P: Existing MH to be replaced Peak Elev=688.14' Inflow=17.34 cfs 280,736 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=17.34 cfs 280,736 cf

Pond 53P: Proposed MH
Peak Elev=692.45' Inflow=16.76 cfs 251,092 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Oufflow=16.76 cfs 251,092 cf

Pond 57P: Vortech 9000
Peak Elev=682.88' Inflow=9.15 cfs 265,909 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Oufflow=9.15 cfs $265,909 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=287,619$ cf Average Runoff Depth $=0.81$ " 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014 C

Page 119
Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=17.40$ cfs @ 8.06 hrs, Volume $=287,619 \mathrm{cf}$, Depth $=0.81^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type IA 24-hr 10 YR Type IA Rainfall=1.80"

13.3 4,450 Total

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014 C

Page 120
Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.81^{\prime \prime}$ for 10 YR Type IA event Inflow $=17.40$ cfs @ 8.06 hrs, Volume $=\quad 287,619 \mathrm{cf}$ Outflow = 17.39 cfs @ 8.06 hrs , Volume $=\quad 287,619 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=7.89 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=4.87 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 551 cf @ 8.06 hrs
Average Depth at Peak Storage= 1.05'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs
36.0" Round Pipe
$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.79" for 10 YR Type IA event
Inflow	17.34 cfs @	8.06 hrs, Volume=	280,736 cf
Outflow	17.34 cfs @	8.06 hrs , Volume=	280,736 cf, Atten= 0\%, Lag= 0.0 min
Primary =	9.15 cfs @	8.06 hrs , Volume=	265,909 cf
Secondary =	8.19 cfs @	8.06 hrs, Volume=	14,827 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=684.74' @ 8.06 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	$683.52 '$	36.0" Round Culvert
			$\mathrm{L}=36.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=9.15 cfs @ 8.06 hrs HW=684.73' TW=682.88' (Dynamic Tailwater)
3=Culvert (Passes 9.15 cfs of 11.58 cfs potential flow)
$L_{1=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 9.15$ cfs @ 6.55 fps)
Secondary OutFlow Max=8.18 cfs @ 8.06 hrs HW=684.73' TW=684.13' (Dynamic Tailwater)
—2=Culvert (Outlet Controls 8.18 cfs @ 4.51 fps)

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

| Inflow Area $=$ | $4,277,592 \mathrm{sf}$, | 65.00% Impervious, | Inflow Depth $=0.75 "$ | for 10 YR Type IA event |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $9.15 \mathrm{cfs} @$ | 8.06 hrs, Volume $=$ | $265,909 \mathrm{cf}$ |
| Outflow | $=$ | $9.15 \mathrm{cfs} @$ | 8.07 hrs, Volume $=$ | $265,909 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.2 \mathrm{~min}$ |
| Primary | $=$ | $9.15 \mathrm{cfs} @$ | 8.07 hrs, Volume $=$ | $265,909 \mathrm{cf}$ |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.73' @ 8.07 hrs Surf.Area= 0.004 ac Storage= 0.051 af Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af

Plug-Flow detention time $=10.9 \mathrm{~min}$ calculated for 265,872 cf (100% of inflow)
Center-of-Mass det. time= $11.0 \mathrm{~min}(859.8-848.8)$

Volume	Invert	Avail.Storage	e Storage Description
\#1	677.79'	0.052 af	af 48.0" Round Pipe Storage $\mathrm{L}=179.0^{\prime}$
Device	Routing	Invert O	Outlet Devices
\#1	Primary	677.79 '48.	48.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Device 1	680.79 ' 5.	5.0' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			Coef. (English) $2.742 .78 \quad 2.86 \quad 3.00 \quad 3.113 .183 .25 \quad 3.29 \quad 3.32$ 3.313 .32
\#3	Device 1	677.79 ' 3.	3.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
Primary OutFlow Max=9.15 cfs @ 8.07 hrs HW=681.73' TW=681.51' (Dynamic Tailwater) $L_{1}=O$ rifice/Grate (Passes 9.15 cfs of 27.97 cfs potential flow) -2=Broad-Crested Rectangular Weir (Weir Controls 9.04 cfs @ 1.93 fps) $-3=$ Orifice/Grate (Orifice Controls 0.11 cfs @ 2.23 fps)			

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00%	Impervious,	Inflow Depth $=0.75 "$	for 10 YR Type IA event
Inflow	$=$	$9.15 \mathrm{cfs} @$	8.07 hrs , Volume $=$	$265,909 \mathrm{cf}$	
Outflow	$=$	$9.15 \mathrm{cfs} @$	8.07 hrs, Volume $=$	$265,910 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.3 \mathrm{~min}$	
Discarded	$=$	$0.11 \mathrm{cfs} @$	8.07 hrs , Volume $=$	$9,754 \mathrm{cf}$	
Primary	$=$	$9.04 \mathrm{cfs} @$	8.07 hrs , Volume $=$	$256,156 \mathrm{cf}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.51' @ 8.07 hrs Surf.Area= 0.011 ac Storage= 0.030 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=6.7 \mathrm{~min}$ calculated for 265,873 of (100% of inflow)
Center-of-Mass det. time $=6.7 \mathrm{~min}(866.4-859.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	677.29'	0.013 af	$6.00^{\prime} \mathrm{W} \times 77.00{ }^{\prime} \mathrm{L} \times 5.00{ }^{\prime} \mathrm{H}$ Field A
			0.053 af Overall -0.022 af Embedded $=0.031$ af $\times 40.0 \%$ Voids
\#2A	677.79'	0.022 af	CMP_Round 48×4 Inside \#1
			Effective Size $=48.0$ 'W $\times 48.0$ " $\mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
			Overall Size $=48.0 \mathrm{~W}$ W 48.0"H $\times 20.00^{\prime} \mathrm{L}$
			Row Length Adjustment $=-5.00{ }^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
		0.034 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	677.79'	18.0" Round Culvert
			$\mathrm{L}=17.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=677.79' / 677.46' S=0.0194 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Discarded	677.29'	$2.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 676.25'
\#3	Device 1	680.79'	5.0 ' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32

Discarded OutFlow Max=0.11 cfs @ 8.07 hrs HW=681.51' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014
Page 127

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency $=64.4 \%$
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$8.19 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Outflow	$=$	$14,827 \mathrm{cf}$	
Primary	$=$	$8.19 \mathrm{cfs} @$	8.06 hrs, Volume $=$
$\mathrm{cfs} @$	8.06 hrs, Volume $=$	$14,827 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	
$14,827 \mathrm{cf}$			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=684.13' @ 8.06 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.04^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=8.18 cfs @ 8.06 hrs HW=684.13' TW=673.82' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 8.18$ cfs @ 3.55 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$8.19 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Outflow	$=$	$14,827 \mathrm{cf}$	
Primary	$=$	$8.19 \mathrm{cfs} @$	8.06 hrs, Volume $=$
$\mathrm{cfs} @$	8.06 hrs, Volume $=$	$14,827 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	
$14,827 \mathrm{cf}$			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=673.82' @ 8.06 hrs
Flood Elev=687.57'

Primary OutFlow Max=8.18 cfs @ 8.06 hrs HW=673.82' TW=672.87' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 8.18 \mathrm{cfs}$ @ 3.55 fps)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00%	Impervious,	Inflow Depth $=0.76 "$
Inflow	$=$	$17.23 \mathrm{cfs} @$	8.06 hrs , Volume $=$	$270,982 \mathrm{cf}$
Outflow	$=$	$17.23 \mathrm{cfs} @$	8.06 hrs Y Type IA event	
Primary $=$	$270,982 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	$=$	$17.23 \mathrm{cfs} @$	8.06 hrs , Volume $=$	$270,982 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.87' @ 8.06 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=17.22 cfs @ 8.06 hrs HW=672.87' TW=672.25' (Dynamic Tailwater)
L1 $^{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 17.22$ cfs @ 4.56 fps)
Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.76$ " for 10 YR Type IA event
Inflow $=17.23$ cfs @ 8.06 hrs, Volume $=270,982 \mathrm{cf}$
Outflow $=17.23$ cfs @ 8.06 hrs, Volume $=270,982 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=17.23$ cfs @ 8.06 hrs, Volume $=\quad 270,982$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=672.25' @ 8.06 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=17.22 cfs @ 8.06 hrs HW=672.25' (Free Discharge)
—1=Culvert (Barrel Controls 17.22 cfs @ 4.69 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.63 \mathrm{cfs} @$	8.06 hrs, Volume $=$	$36,526 \mathrm{cf}$
Outflow	$=$	$0.63 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$36,496 \mathrm{cf}$, Atten $=0 \%$, Lag $=1.6 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$6,852 \mathrm{cf}$
Primary	$=$	$0.58 \mathrm{cfs} @$	8.09 hrs, Volume $=$	$29,644 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 8.09 hrs Surf.Area= 1,499 sf Storage=3,625 cf
Plug-Flow detention time= 189.2 min calculated for 36,491 cf (100\% of inflow)
Center-of-Mass det. time $=189.1 \mathrm{~min}(1,083.9-894.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 8.09 hrs HW=694.82' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.58 cfs @ 8.09 hrs HW=694.82' TW=688.13' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.58 cfs of 14.79 cfs potential flow)
$\mathcal{L}_{2=O r i f i c e / G r a t e}$ (Weir Controls 0.58 cfs @ 0.83 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014 Page 134

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 710.29' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.54' @ 8.06 hrs

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth =	0.81" for 10 YR Type IA event
Inflow	17.39 cfs @	8.06 hrs, Volume=	287,619 cf	
Outflow	17.39 cfs @	8.06 hrs, Volume=	287,619 cf	Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary	16.76 cfs @	8.06 hrs , Volume=	251,092 cf	
Secondary =	0.63 cfs @	8.06 hrs, Volume=	36,526 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 710.29' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.200 .400 .600 .801 .001 .201 .401 .601 .80 ~ 2.00 ~$
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32
Primary OutFlow Max=16.75 cfs @ 8.06 hrs HW=710.29' TW=692.45' (Dynamic Tailwater)			
-2=Culvert (Passes 16.75 cfs of 35.56 cfs potential flow)			
Orifice/Grate (Orifice Controls 0.65 cfs @ 7.50 fps)			
4=Broad-Crested Rectangular Weir (Weir Controls 16.10 cfs @ 3.28 fps)			

Secondary OutFlow Max=0.63 cfs @ 8.06 hrs HW=710.29' TW=694.82' (Dynamic Tailwater)
${ }^{-1=C u l v e r t}$ (Barrel Controls 0.63 cfs @ 3.22 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 688.14' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.79$ " for 10 YR Type IA event
Inflow $=17.34$ cfs @ 8.06 hrs, Volume $=\quad 280,736$ cf

Outflow $=17.34 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume $=\quad 280,736 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=17.34$ cfs @ 8.06 hrs, Volume $=\quad 280,736$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=688.14' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / / \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=17.33 cfs @ 8.06 hrs HW=688.14' TW=684.73' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 17.33 cfs @ 4.37 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 692.45' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.70$ for 10 YR Type IA event
Inflow $=16.76$ cfs @ 8.06 hrs, Volume $=\quad 251,092 \mathrm{cf}$

Outflow = 16.76 cfs @ 8.06 hrs , Volume $=\quad 251,092 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=16.76$ cfs @ 8.06 hrs, Volume $=\quad 251,092 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=692.45' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=16.75 cfs @ 8.06 hrs HW=692.45' TW=688.14' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 16.75 cfs @ 4.32 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.75^{\prime \prime}$ for 10 YR Type IA event
Inflow = 9.15 cfs @ 8.06 hrs, Volume= 265,909 cf Outflow $=9.15 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume $=\quad 265,909 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=9.15$ cfs @ 8.06 hrs, Volume $=\quad 265,909$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=682.88' @ 8.06 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=9.15 cfs @ 8.06 hrs HW=682.88' TW=681.73' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 9.15 cfs @ 5.18 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00% Impervious Runoff Depth $=0.25$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff=53.04 cfs $90,173 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=2.03' Max Vel=10.40 fps Inflow=53.04 cfs 90,173 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0$ ' $\mathrm{S}=0.0364$ '/' Capacity=66.17 cfs Outflow=53.01 cfs $90,173 \mathrm{cf}$

Pond 31P: Bypass Structure
Peak Elev=687.28' Inflow=52.25 cfs 86,296 cf Primary=12.24 cfs 43,999 cf Secondary=40.04 cfs 42,298 cf Outflow=52.25 cfs 86,296 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.92' Storage=0.052 af Inflow=12.24 cfs 43,999 cf Outflow=12.46 cfs 43,999 cf

Pond 33P: 48" Perforated CMP
Peak Elev=681.65' Storage=0.031 af Inflow=12.46 cfs 43,999 cf Discarded=0.11 cfs 3,885 cf Primary=12.11 cfs 40,114 cf Outflow=12.22 cfs $43,999 \mathrm{cf}$

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=685.90' Inflow=40.04 cfs 42,298 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=40.04 cfs $42,298 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=676.09' Inflow=40.04 cfs 42,298 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340 \mathrm{l} / \mathrm{\prime}$ Outflow=40.04 cfs $42,298 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=674.70' Inflow=52.15 cfs 82,412 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Oufflow=52.15 cfs $82,412 \mathrm{cf}$

Pond 44R: 48" CMP Outfall Pipe (Existing)
Peak Elev=673.84' Inflow=52.15 cfs 82,412 cf 48.0" Round Culvert $\mathrm{n}=0.025 \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=52.15 cfs $82,412 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,614 cf Inflow=0.76 cfs 4,948 cf Discarded $=0.05 \mathrm{cfs} 3,877 \mathrm{cf}$ Primary= $0.48 \mathrm{cfs} 1,071 \mathrm{cf}$ Outflow= $0.54 \mathrm{cfs} 4,948 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=711.56' Inflow=53.01 cfs 90,173 cf Primary $=52.25$ cfs 85,225 cf Secondary $=0.76$ cfs 4,948 cf Outflow=53.01 cfs 90,173 cf

Pond 52P: Existing MH to be replaced Peak Elev=690.35' Inflow=52.25 cfs 86,296 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '//' Outflow=52.25 cfs $86,296 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=694.70' Inflow=52.25 cfs 85,225 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Outflow=52.25 cfs $85,225 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=683.98' Inflow=12.24 cfs $43,999 \mathrm{cf}$ 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200 \mathrm{l} / \mathrm{l}$ ' Outflow=12.24 cfs $43,999 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=90,173$ cf Average Runoff Depth $=\mathbf{0 . 2 5 "}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=53.04$ cfs @ 1.15 hrs, Volume $=90,173 \mathrm{cf}$, Depth= $0.25^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs E-WA Short 3-hr 25 YR SDS Rainfall=1.00"

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.25 "$ for 25 YR SDS event Inflow $=53.04$ cfs @ 1.15 hrs, Volume $=\quad 90,173 \mathrm{cf}$ Outflow = $53.01 \mathrm{cfs} @ 1.15 \mathrm{hrs}$, Volume $=\quad 90,173 \mathrm{cf}$, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=10.40 \mathrm{fps}$, Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=4.70 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 1,274 cf @ 1.15 hrs
Average Depth at Peak Storage= 2.03'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs
36.0" Round Pipe
$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

| Inflow Area $=$ | $4,277,592 \mathrm{sf}, 65.00 \%$ | Impervious, | Inflow Depth $=0.24 "$ for 25 YR SDS event | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $52.25 \mathrm{cfs} @$ | 1.15 hrs, Volume $=$ | $86,296 \mathrm{cf}$ |
| Outflow | $=$ | $52.25 \mathrm{cfs} @$ | 1.15 hrs, Volume $=$ | $86,296 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |
| Primary | $=$ | $12.24 \mathrm{cfs} @$ | 1.16 hrs, Volume $=$ | $43,999 \mathrm{cf}$ |
| Secondary $=$ | $40.04 \mathrm{cfs} @$ | 1.15 hrs , Volume $=$ | $42,298 \mathrm{cf}$ | |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=687.28' @ 1.15 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=12.22 cfs @ 1.16 hrs HW=687.27' TW=683.97' (Dynamic Tailwater)
3=Culvert (Passes 12.22 cfs of 15.47 cfs potential flow)
L- $_{1=}$ Orifice/Grate (Orifice Controls 12.22 cfs @ 8.75 fps)
Secondary OutFlow Max=39.97 cfs @ 1.15 hrs HW=687.28' TW=685.90' (Dynamic Tailwater)
—2=Culvert (Inlet Controls 39.97 cfs @ 5.65 fps)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[93] Warning: Storage range exceeded by 0.13 '
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=14)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.12$ " for 25 YR SDS event
Inflow $=12.24$ cfs @ 1.16 hrs, Volume $=\quad 43,999 \mathrm{cf}$
Outflow = 12.46 cfs @ 1.15 hrs , Volume $=\quad 43,999 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=12.46$ cfs @ 1.15 hrs, Volume $=\quad 43,999 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.92' @ 1.15 hrs Surf.Area= 0.000 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=20.8$ min calculated for 43,993 of (100% of inflow)
Center-of-Mass det. time $=20.9 \mathrm{~min}(126.1-105.2$)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.12" for 25 YR SDS event
Inflow	12.46 cfs @	1.15 hrs, Volume=	43,999 cf
Outflow	12.22 cfs @	1.16 hrs, Volume=	$43,999 \mathrm{cf}$, Atten $=2 \%, L a g=0.4 \mathrm{~min}$
Discarded =	0.11 cfs @	1.16 hrs, Volume=	3,885 cf
Primary	12.11 cfs @	1.16 hrs, Volume=	40,114 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.65' @ 1.16 hrs Surf.Area= 0.011 ac Storage= 0.031 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=13.9 \mathrm{~min}$ calculated for 43,993 cf (100% of inflow)
Center-of-Mass det. time= $13.9 \min (139.9-126.1)$

Discarded OutFlow Max=0.11 cfs @ 1.16 hrs HW=681.65' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=12.11 cfs @ 1.16 hrs HW=681.65' TW=674.70' (Dynamic Tailwater)
L1=Culvert (Passes 12.11 cfs of 15.01 cfs potential flow)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency $=64.4 \%$
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$40.04 \mathrm{cfs} @$	1.15 hrs, Volume $=$
Outflow	$=$	$40.04 \mathrm{cfs} @$	1.15 hrs, Volume $=$
Primary	$=$	$40,298 \mathrm{cf}$	
$42.04 \mathrm{cfs} @$	1.15 hrs, Volume $=$	$42,298 \mathrm{cf}$,	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=685.90' @ 1.15 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$683.04 '$	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet / Outlet Invert= $683.04^{\prime} / 677.73^{\prime} \quad \mathrm{S}=0.0347 \mathrm{I}^{\prime \prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=39.99 cfs @ 1.15 hrs HW=685.90' TW=676.08' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{29.99}$ cfs @ 5.76 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$40.04 \mathrm{cfs} @$	1.15 hrs, Volume $=$
Outflow	$=$	$40.04 \mathrm{cfs} @$	1.15 hrs, Volume $=$
Primary	$=$	$40,298 \mathrm{cf}$	
42 298 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	1.15 hrs, Volume $=$	$42,298 \mathrm{cf}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=676.09' @ 1.15 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$672.73 '$	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340 \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=39.99 cfs @ 1.15 hrs HW=676.08' TW=674.70' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{39.99}$ cfs @ 5.66 fps)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.23" for 25 YR SDS event
Inflow	52.15 cfs @	1.15 hrs, Volume=	82,412 cf
Outflow	52.15 cfs @	1.15 hrs, Volume=	$82,412 \mathrm{cf}, \mathrm{Atten}=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary	52.15 cfs @	1.15 hrs , Volume=	82,412 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=674.70' @ 1.15 hrs
Flood Elev= 682.09'

Primary OutFlow Max=52.09 cfs @1.15 hrs HW=674.70 TW=673.84' (Dynamic Tailwater) —1=Culvert (Outlet Controls 52.09 cfs @ 5.68 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.23^{\prime \prime}$ for 25 YR SDS event
Inflow $=52.15$ cfs @ 1.15 hrs, Volume $=82,412 \mathrm{cf}$
Outflow $=52.15 \mathrm{cfs} @ 1.15 \mathrm{hrs}$, Volume $=\quad 82,412 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=52.15$ cfs @ 1.15 hrs, Volume $=\quad 82,412$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=673.84' @ 1.15 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=52.09 cfs @ 1.15 hrs HW=673.84' (Free Discharge)

Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.76 \mathrm{cfs} @$	1.15 hrs, Volume $=$	$4,948 \mathrm{cf}$
Outflow	$=$	$0.54 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$4,948 \mathrm{cf}$, Atten $=30 \%$, Lag $=112.8 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$3,877 \mathrm{cf}$
Primary	$=$	$0.48 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$1,071 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 3.03 hrs Surf.Area= 1,496 sf Storage= 3,614 cf
Plug-Flow detention time $=713.9 \mathrm{~min}$ calculated for 4,947 of (100% of inflow)
Center-of-Mass det. time $=714.3$ min (837.0-122.7)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 3.03 hrs HW=694.82' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.48 cfs @ 3.03 hrs HW=694.82' TW=687.14' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.48 cfs of 14.77 cfs potential flow)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 711.56' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.82 ' @ 1.15 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 711.56' @ 1.15 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Secondary	708.20'	6.0" Round Culvert		
			$L=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.20 \mathrm{sf}$		
\#2	Primary	707.70'	36.0" Round Culvert		
			$\mathrm{L}=180.0{ }^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900		
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf		
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$		
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir		
			Head (feet) $0.200 .400 .600 .801 .001 .201 .401 .601 .80 ~ 2.00 ~$		
			2.50		
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32		
			3.313 .32		
Primary OutFlow Max=52.20 cfs @ 1.15 hrs HW=711.55' TW=694.69' (Dynamic Tailwater) $\leftarrow_{2=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{52.20}$ cfs @ 7.38 fps)					
-3=Orifice/Grate (Passes < 0.81 cfs potential flow)					

Secondary OutFlow Max=0.76 cfs @ 1.15 hrs HW=711.55' TW=691.45' (Dynamic Tailwater)
—1 $_{1=\text { Culvert }}$ (Barrel Controls 0.76 cfs @ 3.88 fps)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 690.35' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.24$ " for 25 YR SDS event Inflow $=52.25$ cfs @ 1.15 hrs, Volume $=\quad 86,296$ cf
Outflow = 52.25 cfs @ 1.15 hrs , Volume $=\quad 86,296 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=52.25$ cfs @ 1.15 hrs, Volume $=\quad 86,296$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 690.35' @ 1.15 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=52.20 cfs @ 1.15 hrs HW=690.34' TW=687.28' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 52.20 cfs @ 7.38 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 694.70' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth $=0.24$ " for 25 YR SDS event Inflow $=52.25$ cfs @ 1.15 hrs, Volume $=\quad 85,225 \mathrm{cf}$
Outflow $=52.25 \mathrm{cfs} @ 1.15 \mathrm{hrs}$, Volume $=\quad 85,225 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=52.25$ cfs @ 1.15 hrs, Volume $=\quad 85,225 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=694.70' @ 1.15 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=52.20 cfs @ 1.15 hrs HW=694.69' TW=690.34' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 52.20 cfs @ 7.38 fps)

Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=\quad 4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.12$ " for 25 YR SDS event
Inflow $=12.24$ cfs @ 1.16 hrs, Volume $=\quad 43,999 \mathrm{cf}$
Outflow = 12.24 cfs @ 1.16 hrs , Volume $=\quad 43,999 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=12.24$ cfs @ 1.16 hrs, Volume $=\quad 43,999 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=683.98' @ 1.15 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=12.23 cfs @ 1.16 hrs HW=683.97' TW=681.90' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 12.23 cfs @ 6.92 fps)
Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth $=1.13$ " Flow Length=4,450' Tc=13.3 $\mathrm{min} \mathrm{CN}=88$ Runoff= $25.75 \mathrm{cfs} 402,336 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=1.30' Max Vel=8.78 fps Inflow=25.75 cfs 402,336 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '//' Capacity= 66.17 cfs Outflow=25.74 cfs $402,336 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=685.32' Inflow=25.69 cfs 395,312 cf Primary $=9.93$ cfs 355,029 cf Secondary $=15.76$ cfs 40,284 cf Outflow= 25.69 cfs 395,312 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.78' Storage=0.052 af Inflow=9.93 cfs 355,029 cf Outflow=9.93 cfs 355,029 cf

Pond 33P: 48" Perforated CMP
Peak Elev=681.55' Storage=0.031 af Inflow=9.93 cfs 355,029 cf Discarded=0.11 cfs 10,129 cf Primary=9.82 cfs $344,901 \mathrm{cf}$ Outflow=9.93 cfs 355,029 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=684.60' Inflow=15.76 cfs $40,284 \mathrm{cf}$ 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=15.76 cfs $40,284 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=674.31' Inflow=15.76 cfs 40,284 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=15.76 cfs $40,284 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=673.36' Inflow=25.58 cfs 385,184 cf 48.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=56.0$ ' $\mathrm{S}=0.0104$ '/' Outflow=25.58 cfs 385,184 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=672.68' Inflow=25.58 cfs 385,184 cf 48.0" Round Culvert n=0.025 L=35.0' $\mathrm{S}=0.0111$ '/' Outflow=25.58 cfs 385,184 cf

Pond 49P: Existing (New) Pond Peak Elev=694.83' Storage=3,629 cf Inflow=0.67 cfs 38,895 cf Discarded $=0.05$ cfs 6,993 cf Primary $=0.61$ cfs 31,872 cf Outflow $=0.67 \mathrm{cfs} 38,864 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=710.61' Inflow=25.74 cfs 402,336 cf Primary $=25.08$ cfs 363,441 cf Secondary= 0.67 cfs 38,895 cf Outflow=25.74 cfs 402,336 cf

Pond 52P: Existing MH to be replaced Peak Elev=688.57' Inflow=25.69 cfs 395,312 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=25.69 cfs $395,312 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=692.89' Inflow=25.08 cfs 363,441 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Oufflow=25.08 cfs $363,441 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=683.14' Inflow=9.93 cfs 355,029 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200 \mathrm{l} / \mathrm{l}$ ' Oufflow=9.93 cfs 355,029 cf

Total Runoff Area $=4,277,592$ sf Runoff Volume $=402,336$ cf Average Runoff Depth $=1.13^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014 C

Page 163
Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=25.75$ cfs @ 8.05 hrs, Volume $=402,336 \mathrm{cf}$, Depth= $1.13^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 YR Type IA Rainfall=2.20"

13.3 4,450 Total

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.13" for 25 YR Type IA event Inflow $=25.75$ cfs @ 8.05 hrs, Volume $=\quad 402,336 \mathrm{cf}$ Outflow $=25.74$ cfs @ 8.06 hrs , Volume $=\quad 402,336 \mathrm{cf}$, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=8.78 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=5.30 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 733 cf @ 8.06 hrs
Average Depth at Peak Storage=1.30'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs
36.0" Round Pipe
$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

| Inflow Area $=$ | $4,277,592 \mathrm{sf}$, | 65.00% | Impervious, | Inflow Depth $=$ | $1.11 "$ |
| :--- | :--- | :--- | :--- | :--- | :--- | for 25 YR Type IA event

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=685.32' @ 8.06 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	$681.17{ }^{\prime}$	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=9.93 cfs @ 8.06 hrs HW=685.32' TW=683.14' (Dynamic Tailwater)
3=Culvert (Passes 9.93 cfs of 12.57 cfs potential flow)
$L_{1=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 9.93$ cfs @ 7.11 fps)
Secondary OutFlow Max=15.75 cfs @ 8.06 hrs HW=685.32' TW=684.60' (Dynamic Tailwater)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00% Impervious,	Inflow Depth $=1.00 "$	for 25 YR Type IA event
Inflow	$=$	$9.93 \mathrm{cfs} @$	8.06 hrs, Volume $=$	$355,029 \mathrm{cf}$
Outflow	$=$	$9.93 \mathrm{cfs} @$	8.06 hrs, Volume $=$	$355,029 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.1 \mathrm{~min}$
Primary	$=$	$9.93 \mathrm{cfs} @$	8.06 hrs, Volume $=$	$355,029 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.78' @ 8.06 hrs Surf.Area= 0.002 ac Storage= 0.052 af Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af

Plug-Flow detention time $=8.5 \mathrm{~min}$ calculated for 354,980 of (100% of inflow)
Center-of-Mass det. time $=8.6 \mathrm{~min}$ (851.9-843.2)

Volume	Invert	Avail.Storage	e Storage Description
\#1	677.79'	0.052 af	af 48.0" Round Pipe Storage $\mathrm{L}=179.0^{\prime}$
Device	Routing	Invert O	Outlet Devices
\#1	Primary	677.79 ' 48	48.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Device 1	680.79 '	5.0' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			Coef. (English) $2.742 .782 .863 .003 .113 .183 .25 \quad 3.29 \quad 3.32$ 3.313 .32
\#3	Device 1	677.79 ' 3.	3.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
Primary OutFlow Max=9.93 cfs @ 8.06 hrs HW=681.78' TW=681.55' (Dynamic Tailwater) $L_{1=O r i f i c e / G r a t e ~(P a s s e s ~} 9.93$ cfs of 28.76 cfs potential flow) -2=Broad-Crested Rectangular Weir (Weir Controls 9.82 cfs @ 1.99 fps) 3=Orifice/Grate (Orifice Controls 0.11 cfs @ 2.29 fps)			

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 1.00" for 25 YR Type IA event
Inflow	9.93 cfs @	8.06 hrs, Volume=	355,029 cf
Outflow	9.93 cfs @	8.06 hrs, Volume=	355,029 cf, Atten= 0\%, Lag= 0.2 min
Discarded =	0.11 cfs @	8.06 hrs, Volume=	10,129 cf
Primary	9.82 cfs @	8.06 hrs, Volume $=$	344,901 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.55' @ 8.06 hrs Surf.Area= 0.011 ac Storage= 0.031 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=5.2$ min calculated for 354,980 of (100% of inflow)
Center-of-Mass det. time $=5.2 \mathrm{~min}$ (857.1-851.9)

Discarded OutFlow Max=0.11 cfs @ 8.06 hrs HW=681.55' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=9.82 cfs @ 8.06 hrs HW=681.55' TW=673.36' (Dynamic Tailwater)
${ }^{4} 1=$ Culvert (Passes 9.82 cfs of 14.76 cfs potential flow)
$\underbrace{}_{3=}$ Broad-Crested Rectangular Weir (Weir Controls 9.82 cfs @ 2.59 fps)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
2,310.0 cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Outflow	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Primary	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=684.60' @ 8.06 hrs
Flood Elev= 687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=15.75 cfs @ 8.06 hrs HW=684.60' TW=674.31' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{15.75}$ cfs @ 4.25 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Outflow	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$
Primary	$=$	$15.76 \mathrm{cfs} @$	8.06 hrs, Volume $=$
$40,284 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
$40,284 \mathrm{cf}$			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.31' @ 8.06 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05^{\prime} \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.907 \mathrm{sf}$	

Primary OutFlow Max=15.75 cfs @ 8.06 hrs HW=674.31' TW=673.36' (Dynamic Tailwater)
$\left\llcorner_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{15.75}\right.$ cfs @ 6.05 fps)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.08$ " for 25 YR Type IA event
Inflow $=25.58$ cfs @ 8.06 hrs, Volume $=385,184 \mathrm{cf}$
$385,184 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$ Outflow = $25.58 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume= 385,184 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=673.36' @ 8.06 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=25.57 cfs @ 8.06 hrs HW=673.36' TW=672.68' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 25.57 cfs @ 4.90 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.08$ " for 25 YR Type IA event
Inflow $=25.58 \mathrm{cfs} @ 8.06$ hrs, Volume $=385,184 \mathrm{cf}$
Outflow $=25.58 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume $=385,184 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=25.58$ cfs @ 8.06 hrs, Volume $=385,184$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=672.68' @ 8.06 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime} \quad$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111$	
	$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	$\mathrm{Cc}=0.900$	

Primary OutFlow Max=25.57 cfs @ 8.06 hrs HW=672.68' (Free Discharge)
L-1=Culvert (Barrel Controls 25.57 cfs @ 5.19 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.67 \mathrm{cfs} @$	8.06 hrs, Volume $=$	$38,895 \mathrm{cf}$
Outflow	$=$	$0.67 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$38,864 \mathrm{cf}$, Atten $=0 \%$, Lag $=1.4 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$6,993 \mathrm{cf}$
Primary	$=$	$0.61 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$31,872 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.83' @ 8.08 hrs Surf.Area= 1,500 sf Storage= 3,629 cf
Plug-Flow detention time= 182.2 min calculated for 38,864 cf (100% of inflow)
Center-of-Mass det. time $=181.8 \mathrm{~min}(1,055.5-873.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 8.08 hrs HW=694.83' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.61 cfs @ 8.08 hrs HW=694.83' TW=688.56' (Dynamic Tailwater)

$\mathcal{L}_{2}=$ Orifice/Grate (Weir Controls $0.61 \mathrm{cfs} @ 0.84 \mathrm{fps}$)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 710.61' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.61' @ 8.06 hrs

Inflow Area	4,277,592 sf,	65.00\% Impervious,	Inflow Depth	13" for 25 YR Type IA event
Inflow	25.74 cfs @	8.06 hrs, Volume=	402,336 cf	
Outflow	25.74 cfs @	8.06 hrs, Volume $=$	402,336 cf,	, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	25.08 cfs @	8.06 hrs, Volume=	363,441 cf	
Secondary =	0.67 cfs @	8.06 hrs, Volume $=$	38,895 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 710.61' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Secondary	708.20'	6.0" Round Culvert		
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf		
\#2	Primary	707.70'	36.0" Round Culvert		
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900		
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf		
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$		
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir		
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80		
			2.50		
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32		
			3.313 .32 2		
Primary OutFlow Max=25.07 cfs @ 8.06 hrs HW=710.61' TW=692.89' (Dynamic Tailwater) $\left\llcorner_{2=\text { Culvert (Passes } 25.07 \text { cfs of } 40.63 \text { cfs potential flow) }}\right.$					
-3=Orifice/Grate (Orifice Controls $0.70 \mathrm{cfs} @ 7.97 \mathrm{fps}$)					

Secondary OutFlow Max=0.67 cfs @ 8.06 hrs HW=710.61' TW=694.83' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.67 cfs @ 3.40 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014
Page 180
Pond 51P: Flow Splitter
Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 688.57' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.11" for 25 YR Type IA event Inflow $=25.69$ cfs @ 8.06 hrs, Volume $=395,312 \mathrm{cf}$
Outflow $=25.69 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume $=395,312 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=25.69$ cfs @ 8.06 hrs, Volume $=395,312$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=688.57' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=25.68 cfs @ 8.06 hrs HW=688.57' TW=685.32' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 25.68 cfs @ 4.91 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 692.89' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth $=1.02$ " for 25 YR Type IA event Inflow = 25.08 cfs @ 8.06 hrs, Volume= Outflow = 25.08 cfs @ 8.06 hrs , Volume= Primary $=25.08$ cfs @ 8.06 hrs, Volume $=$ 363,441 cf
$363,441 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min 363,441 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=692.89' @ 8.06 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=25.07 cfs @ 8.06 hrs HW=692.89' TW=688.57' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 25.07 cfs @ 4.87 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.00$ " for 25 YR Type IA event Inflow $=9.93$ cfs @ 8.06 hrs, Volume $=355,029 \mathrm{cf}$ Outflow $=\quad 9.93 \mathrm{cfs} @ 8.06 \mathrm{hrs}$, Volume $=355,029 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=\quad 9.93$ cfs @ 8.06 hrs, Volume $=355,029 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=683.14' @ 8.06 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=9.93 cfs @ 8.06 hrs HW=683.14' TW=681.78' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 9.93 cfs @ 5.62 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth $=0.39$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff=83.72 cfs $138,416 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=3.00' Max Vel=10.66 fps Inflow=83.72 cfs 138,416 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '// Capacity= 66.17 cfs Outflow=70.72 cfs $138,416 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=689.78' Inflow=69.80 cfs 134,514 cf Primary $=14.55$ cfs 57,608 cf Secondary=55.25 cfs 76,905 cf Outflow=69.80 cfs 134,514 cf

Pond 32P: 48" Unperforated Storage Peak Elev=682.09' Storage=0.052 af Inflow=14.55 cfs 57,608 cf Outflow=16.09 cfs 57,608 cf

Pond 33P: 48" Perforated CMP
Peak Elev=681.75' Storage=0.032 af Inflow=16.09 cfs 57,608 cf Discarded $=0.11$ cfs 3,922 cf Primary $=14.45$ cfs 53,687 cf Outflow=14.56 cfs $57,608 \mathrm{cf}$

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=687.18' Inflow=55.25 cfs 76,905 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=55.25 cfs $76,905 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=678.51' Inflow=55.25 cfs 76,905 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=55.25 cfs $76,905 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=675.88' Inflow=69.68 cfs 130,592 cf 48.0" Round Culvert n=0.013 L=56.0' S=0.0104 '/' Outflow=69.68 cfs 130,592 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=674.55' Inflow=69.68 cfs 130,592 cf 48.0" Round Culvert $n=0.025 \quad \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=69.68 cfs $130,592 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,616 cf Inflow=0.92 cfs 5,377 cf Discarded $=0.05$ cfs $3,902 \mathrm{cf}$ Primary $=0.50 \mathrm{cfs} 1,475 \mathrm{cf}$ Outflow= $0.55 \mathrm{cfs} 5,377 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=713.41' Inflow=70.72 cfs 138,416 cf
Primary $=69.80$ cfs 133,039 cf Secondary $=0.92$ cfs 5,377 cf Outflow=70.72 cfs 138,416 cf
Pond 52P: Existing MH to be replaced Peak Elev=694.05' Inflow=69.80 cfs 134,514 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=69.80 cfs $134,514 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=697.98' Inflow=69.80 cfs 133,039 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Outflow=69.80 cfs $133,039 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=685.01' Inflow=14.55 cfs 57,608 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=14.55 cfs $57,608 \mathrm{cf}$

Total Runoff Area $=\mathbf{4 , 2 7 7}, 592$ sf Runoff Volume $=138,416$ cf Average Runoff Depth $=0.39^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=83.72$ cfs @ 1.14 hrs, Volume $=138,416 \mathrm{cf}$, Depth $=0.39^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs E-WA Short 3-hr 50 YR SDS Rainfall=1.22"

Area (ac) CN Description					
1.900			1/8 acre lots, 65% imp, HSG B		
39.400		85 1/8	/8 acre lots, 65% imp, HSG B		
0.300		85 1/8	1/8 acre lots, 65% imp, HSG B		
56.600		$90 \quad 1 / 8$	18 acre lots, 65% imp, HSG C		
98.		8 Weig	hted Ave	age	
34.3	370	35.0	\% Pervio	us Area	
63.		65.0	\% Imperv	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
2.3	150	0.0300	1.07		Sheet Flow, Smooth surfaces $n=0.011 \quad P 2=1.20 "$
1.4	300	0.0300	3.52		Shallow Concentrated Flow, Paved Kv=20.3 fps
4.4	1,400	0.0300	5.35	9.46	Pipe Channel, CMP_Round 18" 18.0" Round Area= 1.8 sf Perim=4.7'r=0.38' $\mathrm{n}=0.025$ Corrugated metal
2.4	1,300	0.0600	9.17	28.81	Pipe Channel, CMP_Round 24" 24.0" Round Area=3.1 sf Perim=6.3' $r=0.50^{\prime}$ $\mathrm{n}=0.025$ Corrugated metal
2.8	1,300	0.0250	7.76	54.84	Pipe Channel, CMP_Round 36" 36.0" Round Area=7.1 sf Perim= 9.4' $r=0.75^{\prime}$ $\mathrm{n}=0.025$ Corrugated metal

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
[55] Hint: Peak inflow is 127% of Manning's capacity
[76] Warning: Detained 6,725 cf (Pond w/culvert advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 0.39" for 50 YR SDS event Inflow $=83.72$ cfs @ 1.14 hrs, Volume $=138,416$ cf
Outflow $=\quad 70.72 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume $=138,416 \mathrm{cf}$, Atten= 16%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=10.66 \mathrm{fps}$, Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=5.05 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage=1,767 cf @ 1.09 hrs
Average Depth at Peak Storage=3.00'
Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs
36.0" Round Pipe
$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe
 Outflow

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.
[58] Hint: Peaked 2.44' above defined flood level

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth $=0.38$ " for 50 YR SDS event
Inflow	69.80 cfs @	1.08 hrs, Volume=	134,514 cf
Outflow	69.80 cfs @	1.08 hrs , Volume=	$134,514 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	14.55 cfs @	1.08 hrs , Volume=	57,608 cf
Secondary =	55.25 cfs @	1.08 hrs, Volume=	76,905 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=689.78' @ 1.08 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=14.66 cfs @ 1.08 hrs HW=689.75' TW=685.00' (Dynamic Tailwater)
$3=C u l v e r t$ (Passes 14.66 cfs of 18.55 cfs potential flow)
_1=Orifice/Grate (Orifice Controls 14.66 cfs @ 10.50 fps)
Secondary OutFlow Max=54.78 cfs @ 1.08 hrs HW=689.74' TW=687.15' (Dynamic Tailwater)
-2=Culvert (Inlet Controls 54.78 cfs @ 7.75 fps)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[93] Warning: Storage range exceeded by 0.30'
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=6)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth $=0.16$ " for 50 YR SDS event
Inflow $=14.55$ cfs @ 1.08 hrs, Volume $=\quad 57,608 \mathrm{cf}$
Outflow = $16.09 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume $=\quad 57,608 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=16.09$ cfs @ 1.08 hrs, Volume $=\quad 57,608 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=682.09' @ 1.08 hrs Surf.Area= 0.000 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=16.1 \mathrm{~min}$ calculated for 57,600 of (100% of inflow)
Center-of-Mass det. time $=16.2 \mathrm{~min}(123.6-107.4)$

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

[58] Hint: Peaked 0.03' above defined flood level

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 0.16" for 50 YR SDS event
Inflow	16.09 cfs @	1.08 hrs, Volume=	57,608 cf
Outflow	14.56 cfs @	1.08 hrs , Volume=	$57,608 \mathrm{cf}$, Atten= 9\%, Lag= 0.1 min
Discarded $=$	0.11 cfs @	1.08 hrs , Volume=	3,922 cf
Primary	14.45 cfs @	1.08 hrs , Volume=	53,687 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.75' @ 1.08 hrs Surf.Area= 0.011 ac Storage= 0.032 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=10.7 \mathrm{~min}$ calculated for 57,600 of (100% of inflow)
Center-of-Mass det. time $=10.7 \mathrm{~min}(134.3-123.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	677.29'	0.013 af	$6.00^{\prime} \mathrm{W} \times 77.00^{\prime} \mathrm{L} \times 5.00^{\prime} \mathrm{H}$ Field A
			0.053 af Overall - 0.022 af Embedded $=0.031$ af $\times 40.0 \%$ Voids
\#2A	677.79'	0.022 af	CMP_Round 48×4 Inside \#1
			Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
			Overall Size $=48.0$ 'W $\times 48.0$ " $\mathrm{H} \times 20.00{ }^{\prime} \mathrm{L}$
			Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
0.034 af Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outlet Devices	
\#1	Primary	677.79' 18,	0" Round Culvert
			17.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			t / Outlet Invert= 677.79' / 677.46' S=0.0194 '/' Cc= 0.900
			0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Discarded	677.29 ' 2.	$000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			nductivity to Groundwater Elevation = 676.25'
\#3	Device 1	680.79' $\begin{aligned} & \\ & \\ & H \\ & 2 \\ & \\ & \\ & \\ & \\ & 3\end{aligned}$	long x 0.8' breadth Broad-Crested Rectangular Weir
			$\begin{array}{llllllllllllll}\text { ad (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}$
			f. (English) 2.742 .782 .863 .003 .1133 .183 .253 .293 .32
			3.32

Discarded OutFlow Max=0.11 cfs @ 1.08 hrs HW=681.74' (Free Discharge)
$L_{2=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.11 \mathrm{cfs}$)
Primary OutFlow Max=14.39 cfs @ 1.08 hrs HW=681.74' TW=675.81' (Dynamic Tailwater)
1=Culvert (Passes 14.39 cfs of 15.23 cfs potential flow)
$\leftarrow_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 14.39$ cfs @ 3.01 fps)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
2,310.0 cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$55.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$
Outflow	$=$	$75.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$
$76,905 \mathrm{cf}$			
Primary, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	$55.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$	$76,905 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=687.18' @ 1.08 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=55.02 cfs @ 1.08 hrs HW=687.15' TW=678.47' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{55.02}$ cfs @ 7.78 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$55.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$
Outflow	$=$	$75.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$
$76,905 \mathrm{cf}$			
Primary, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	$55.25 \mathrm{cfs} @$	1.08 hrs, Volume $=$	$76,905 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=678.51' @ 1.08 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
\#1	Primary	672.73'	36.0" Round Culvert
			$\mathrm{L}=20.0{ }^{\text {' }} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 672.73' / 672.05' S=0.0340 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf

Primary OutFlow Max=55.02 cfs @ 1.08 hrs HW=678.47' TW=675.86' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{55.02}$ cfs @ 7.78 fps)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=675.88' @ 1.08 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=69.43 cfs @ 1.08 hrs HW=675.86' TW=674.55' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 69.43 cfs @ 5.52 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)
[58] Hint: Peaked 0.08' above defined flood level
Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.37{ }^{\prime \prime}$ for 50 YR SDS event
Inflow $=69.68$ cfs @ 1.08 hrs, Volume $=130,592 \mathrm{cf}$
Outflow = $69.68 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume $=130,592 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
69.68 cfs @ 1.08 hrs, Volume=

130,592 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.55' @ 1.08 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111 \mathrm{I} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	

Primary OutFlow Max=69.51 cfs @ 1.08 hrs HW=674.55' (Free Discharge)
—1=Culvert (Barrel Controls 69.51 cfs @ 6.74 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.92 \mathrm{cfs} @$	1.08 hrs, Volume $=$	$5,377 \mathrm{cf}$
Outflow	$=$	$0.55 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$5,377 \mathrm{cf}$, Atten $=40 \%$, Lag $=116.9 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$3,902 \mathrm{cf}$
Primary	$=$	$0.50 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$1,475 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 3.03 hrs Surf.Area= 1,496 sf Storage= 3,616 cf
Plug-Flow detention time $=663.0 \mathrm{~min}$ calculated for 5,376 of (100% of inflow)
Center-of-Mass det. time $=663.3 \min (784.3-120.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 3.03 hrs HW=694.82' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.50 cfs @ 3.03 hrs HW=694.82' TW=687.27' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.50 cfs of 14.78 cfs potential flow)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 713.41' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 2.99' @ 1.08 hrs

Inflow Area	4,277,592 sf,	rvious,	Inflow Depth $=0.39$ " for 50 YR SDS event
Inflow	70.72 cfs @	1.08 hrs, Volume=	138,416 cf
Outflow	70.72 cfs @	1.08 hrs, Volume=	$138,416 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	69.80 cfs @	1.08 hrs , Volume=	133,039 cf
Secondary =	0.92 cfs @	1.08 hrs, Volume=	5,377 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 713.41' @ 1.08 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) $\begin{array}{llllllllllll} \\ 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}$
			2.50
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{lllllll} & 3.18 & 3.25 & 3.29 & 3.32\end{array}$
			3.313 .32

Primary OutFlow Max=69.55 cfs @ 1.08 hrs HW=713.38' TW=697.89' (Dynamic Tailwater)
2=Culvert (Inlet Controls 69.55 cfs @ 9.84 fps)
-3=Orifice/Grate (Passes < 0.99 cfs potential flow)
4=Broad-Crested Rectangular Weir (Passes < 127.50 cfs potential flow)
Secondary OutFlow Max=0.92 cfs @ 1.08 hrs HW=713.38' TW=691.23' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.92 cfs @ 4.67 fps)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 694.05' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.38$ " for 50 YR SDS event Inflow $=69.80$ cfs @ 1.08 hrs, Volume $=134,514 \mathrm{cf}$
Outflow $=69.80 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume $=134,514 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=69.80$ cfs @ 1.08 hrs, Volume $=134,514$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=694.05' @ 1.08 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=69.50 cfs @ 1.08 hrs HW=693.98' TW=689.74' (Dynamic Tailwater)
—1 $_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 69.50$ cfs @ 9.83 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 697.98' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}, 65.00 \%$ Impervious, Inflow Depth $=0.37{ }^{\prime \prime}$ for 50 YR SDS event
Inflow = $69.80 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume=
Outflow = 69.80 cfs @ 1.08 hrs , Volume=
Primary =
69.80 cfs @
1.08 hrs , Volume=

133,039 cf
$133,039 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
133,039 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=697.98' @ 1.08 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=67.29 cfs @ 1.08 hrs HW=697.89' TW=693.98' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 67.29 cfs @ 9.52 fps)

Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.16 "$ for 50 YR SDS event
Inflow $=14.55$ cfs @ 1.08 hrs, Volume $=\quad 57,608 \mathrm{cf}$
Outflow = $14.55 \mathrm{cfs} @ 1.08 \mathrm{hrs}$, Volume $=\quad 57,608 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=14.55$ cfs @ 1.08 hrs, Volume $=\quad 57,608 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=685.01' @ 1.08 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=14.54 cfs @ 1.08 hrs HW=685.00' TW=682.08' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 14.54 cfs @ 8.23 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area $=98.200$ ac 65.00% Impervious Runoff Depth $=1.30$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff=30.14 cfs $462,089 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=1.42' Max Vel=9.14 fps Inflow=30.14 cfs 462,089 cf 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '// Capacity= 66.17 cfs Outflow=30.12 cfs $462,089 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=685.59' Inflow=30.07 cfs 455,006 cf Primary $=10.28$ cfs 396,833 cf Secondary $=19.79$ cfs 58,174 cf Outflow=30.07 cfs 455,006 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.80' Storage=0.052 af Inflow=10.28 cfs 396,833 cf Outflow=10.28 cfs 396,833 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.56' Storage=0.031 af Inflow=10.28 cfs 396,833 cf Discarded= 0.11 cfs 10,290 cf Primary=10.17 cfs 386,543 cf Outflow=10.28 cfs 396,833 cf

Pond 39R: 36" Smooth PE Bypass Pipe Peak Elev=684.82' Inflow=19.79 cfs 58,174 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=19.79 cfs $58,174 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe Peak Elev=674.58' Inflow=19.79 cfs 58,174 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow= $19.79 \mathrm{cfs} 58,174 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=673.60' Inflow=29.96 cfs 444,717 cf 48.0" Round Culvert n=0.013 L=56.0' S=0.0104 '/' Outflow=29.96 cfs 444,717 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=672.89' Inflow=29.96 cfs 444,717 cf 48.0" Round Culvert n=0.025 L=35.0' S=0.0111 '/' Outflow=29.96 cfs 444,717 cf

Pond 49P: Existing (New) Pond Peak Elev=694.83' Storage=3,630 cf Inflow=0.68 cfs 39,940 cf Discarded $=0.05$ cfs $7,052 \mathrm{cf}$ Primary $=0.63 \mathrm{cfs} 32,857$ cf Outflow $=0.68 \mathrm{cfs} 39,909 \mathrm{cf}$

Pond 51P: Flow Splitter Peak Elev=710.76' Inflow=30.12 cfs 462,089 cf
Primary $=29.44$ cfs 422,150 cf Secondary= 0.68 cfs 39,940 cf Outflow=30.12 cfs 462,089 cf
Pond 52P: Existing MH to be replaced Peak Elev=688.79' Inflow=30.07 cfs 455,006 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=30.07 cfs $455,006 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=693.11' Inflow=29.44 cfs 422,150 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Oufflow=29.44 cfs $422,150 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=683.26' Inflow=10.28 cfs 396,833 cf
18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=10.28 cfs $396,833 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=462,089$ cf Average Runoff Depth $=1.30^{\prime \prime}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014
Revised 10/22/4 Prined 10220120

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=30.14$ cfs @ 8.05 hrs, Volume $=462,089 \mathrm{cf}$, Depth= $1.30^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type IA 24-hr 50 YR Type IA Rainfall=2.40"

13.3 4,450 Total

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC Revised 10/22/14 Printed 10/22/2014

Page 209
Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.30" for 50 YR Type IA event Inflow $=30.14$ cfs @ 8.05 hrs, Volume= 462,089 cf
Outflow = $30.12 \mathrm{cfs} @ 8.05 \mathrm{hrs}$, Volume $=\quad 462,089 \mathrm{cf}$, Atten= 0%, Lag= 0.3 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=9.14 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=5.48 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 824 cf @ 8.05 hrs
Average Depth at Peak Storage=1.42'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area $=$	$4,277,592 \mathrm{sf}$,	65.00%	Impervious,	Inflow Depth $=$
Inflow	$=$	$30.07 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$455,006 \mathrm{cf}$
for 50 YR Type IA event				
Outflow	$=$	$30.07 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$455,006 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$10.28 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$396,833 \mathrm{cf}$
Secondary $=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$58,174 \mathrm{cf}$	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=685.59' @ 8.05 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=1.77$ sf

Primary OutFlow Max=10.28 cfs @ 8.05 hrs HW=685.59' TW=683.26' (Dynamic Tailwater)
3=Culvert (Passes 10.28 cfs of 13.01 cfs potential flow)
L_1=Orifice/Grate (Orifice Controls 10.28 cfs @ 7.36 fps)
Secondary OutFlow Max=19.78 cfs @ 8.05 hrs HW=685.59' TW=684.82' (Dynamic Tailwater)
—2=Culvert (Outlet Controls 19.78 cfs @ 5.34 fps)

Squilchuck Storm - 90\% Design
Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC
Revised 10/22/14 Printed 10/22/2014
Page 212

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[93] Warning: Storage range exceeded by 0.01^{\prime}
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.11^{\prime \prime}$ for 50 YR Type IA event Inflow $=10.28$ cfs @ 8.05 hrs, Volume $=396,833$ cf
Outflow $=10.28$ cfs @ 8.05 hrs , Volume $=\quad 396,833 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.1 min
Primary $=10.28$ cfs @ 8.05 hrs, Volume $=396,833$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.80' @ 8.06 hrs Surf.Area= 0.000 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage $=0.052$ af
Plug-Flow detention time $=7.7$ min calculated for 396,778 of (100% of inflow)
Center-of-Mass det. time $=7.9 \mathrm{~min}$ (850.4-842.6)

Volume	Invert	Avail.Storage	ge Storage Description
\#1	677.79 '	0.052 af	af 48.0" Round Pipe Storage $\mathrm{L}=179.0^{\prime}$
Device	Routing	Invert O	Outlet Devices
\#1	Primary	677.79' 48.	48.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#2	Device 1	680.79 ' 5	5.0 ' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .60 0.80 1.001 .201 .401 .601 .80
			2.50
			Coef. (English) 2.742 .782 .863 .003 .1133 .183 .253 .293 .32
\#3	Device 1	677.79	3.0" Vert. Orifice/Grate C= 0.600
Primary OutFlow Max=10.28 cfs @ 8.05 hrs HW=681.80' TW=681.56' (Dynamic Tailwater) $L_{1=O}=$ rifice/Grate (Passes 10.28 cfs of 29.08 cfs potential flow)			
-2=Broad-Crested Rectangular Weir (Weir Controls 10.17 cfs @ 2.02 fps) -3=Orifice/Grate (Orifice Controls 0.11 cfs @ 2.31 fps)			

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 1.11" for 50 YR Type IA event
Inflow	10.28 cfs @	8.05 hrs, Volume=	396,833 cf
Outflow	10.28 cfs @	8.06 hrs, Volume=	396,833 cf, Atten= 0\%, Lag= 0.1 min
Discarded =	0.11 cfs @	8.06 hrs , Volume=	10,290 cf
Primary	10.17 cfs @	8.06 hrs, Volume $=$	386,543 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.56' @ 8.06 hrs Surf.Area= 0.011 ac Storage= 0.031 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=4.8 \mathrm{~min}$ calculated for 396,778 of (100% of inflow)
Center-of-Mass det. time $=4.8 \mathrm{~min}$ (855.2-850.4)

Discarded OutFlow Max=0.11 cfs @ 8.06 hrs HW=681.56' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=10.17 cfs @ 8.06 hrs HW=681.56' TW=673.60' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 10.17 cfs of 14.80 cfs potential flow)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
2,310.0 cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Outflow	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Primary	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=684.82' @ 8.05 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $683.04^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{I}^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=19.78 cfs @ 8.05 hrs HW=684.82' TW=674.58' (Dynamic Tailwater)

Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Outflow	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Primary	$=$	$19.79 \mathrm{cfs} @$	8.05 hrs, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.58' @ 8.05 hrs
Flood Elev=687.57'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	672.73^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet $/$ Outlet Invert= $672.73^{\prime} / 672.05 ' \mathrm{~S}=0.0340 \mathrm{I} / \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=19.78 cfs @ 8.05 hrs HW=674.58' TW=673.60' (Dynamic Tailwater)
$\left\llcorner_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{19.78}\right.$ cfs @ 6.18 fps)
Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.25^{\prime \prime}$ for 50 YR Type IA event
Inflow $=29.96$ cfs @ 8.05 hrs, Volume $=444,717 \mathrm{cf}$
Outflow $=29.96$ cfs @ 8.05 hrs , Volume $=\quad 444,717 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=29.96$ cfs @ 8.05 hrs, Volume $=\quad 444,717$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=673.60' @ 8.05 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=29.95 cfs @ 8.05 hrs HW=673.60' TW=672.89' (Dynamic Tailwater)
L1 $^{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 29.95$ cfs @ 5.05 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.25^{\prime \prime}$ for 50 YR Type IA event
Inflow $=29.96$ cfs @ 8.05 hrs, Volume $=444,717 \mathrm{cf}$
Outflow $=29.96$ cfs @ 8.05 hrs , Volume $=\quad 444,717 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary $=29.96$ cfs @ 8.05 hrs, Volume $=\quad 444,717$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.89' @ 8.05 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.01111^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	

Primary OutFlow Max=29.95 cfs @ 8.05 hrs HW=672.89' (Free Discharge)
L1 $^{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 29.95$ cfs @ 5.40 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.68 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$39,940 \mathrm{cf}$
Outflow	$=$	$0.68 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$39,909 \mathrm{cf}$, Atten $=0 \%$, Lag $=1.4 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$7,052 \mathrm{cf}$
Primary	$=$	$0.63 \mathrm{cfs} @$	8.08 hrs, Volume $=$	$32,857 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.83' @ 8.08 hrs Surf.Area= 1,500 sf Storage= 3,630 cf
Plug-Flow detention time= 178.8 min calculated for 39,904 cf (100% of inflow)
Center-of-Mass det. time $=178.7 \mathrm{~min}(1,043.6-864.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Device	Routing	Invert	Outlet Devices
\#1	Primary	690.92'	18.0" Round Culvert
			$\mathrm{L}=23.0{ }^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=690.92' / 690.00' S=0.0400 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 1.77 sf
\#2	Device 1	694.76'	42.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Discarded	689.00'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=686.00$ '

Discarded OutFlow Max=0.05 cfs @ 8.08 hrs HW=694.83' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.63 cfs @ 8.08 hrs HW=694.83' TW=688.78' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.63 cfs of 14.80 cfs potential flow)
$L_{2=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 0.63 \mathrm{cfs} @ 0.85 \mathrm{fps}$)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 710.76' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.64' @ 8.05 hrs

| Inflow Area $=$ | $4,277,592$ sf, | 65.00% Impervious, | Inflow Depth $=1.30 "$ | for 50 YR Type IA event |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Inflow | $=$ | $30.12 \mathrm{cfs} @$ | 8.05 hrs , Volume $=$ | $462,089 \mathrm{cf}$ |
| Outflow | $=$ | $30.12 \mathrm{cfs} @$ | 8.05 hrs , Volume $=$ | $462,089 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |
| Primary | $=$ | $29.44 \mathrm{cfs} @$ | 8.05 hrs , Volume $=$ | $422,150 \mathrm{cf}$ |
| Secondary $=$ | $0.68 \mathrm{cfs} @$ | 8.05 hrs, Volume $=$ | $39,940 \mathrm{cf}$ | |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 710.76' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '// Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) $\begin{array}{llllllllllll} \\ 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}$
			2.50
			Coef. (English) $2.742 .782 .863 .003 .11 \begin{array}{lllllll} & 3.18 & 3.25 & 3.29 & 3.32\end{array}$
			3.313 .32

Primary OutFlow Max=29.43 cfs @ 8.05 hrs HW=710.76' TW=693.11' (Dynamic Tailwater)
$\left\llcorner_{2}=\right.$ Culvert (Passes 29.43 cfs of 42.48 cfs potential flow)
-3=Orifice/Grate (Orifice Controls 0.71 cfs @ 8.19 fps)
4=Broad-Crested Rectangular Weir (Weir Controls 28.72 cfs @ 4.10 fps)
Secondary OutFlow Max=0.68 cfs @ 8.05 hrs HW=710.76' TW=694.83' (Dynamic Tailwater)
—1 $_{1=\text { Culvert }}$ (Barrel Controls 0.68 cfs @ 3.48 fps)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 688.79' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.28" for 50 YR Type IA event
Inflow $=30.07$ cfs @ 8.05 hrs, Volume $=\quad 455,006$ cf

Outflow $=30.07 \mathrm{cfs} @ 8.05 \mathrm{hrs}$, Volume $=455,006 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=30.07$ cfs @ 8.05 hrs, Volume $=\quad 455,006$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=688.79' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=30.06 cfs @ 8.05 hrs HW=688.79' TW=685.59' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 30.06$ cfs @ 5.17 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 693.11' (Flood elevation advised)
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.18" for 50 YR Type IA event Inflow $=29.44$ cfs @ 8.05 hrs, Volume $=\quad 422,150 \mathrm{cf}$ Outflow = 29.44 cfs @ 8.05 hrs , Volume $=\quad 422,150 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=29.44$ cfs @ 8.05 hrs, Volume $=$ 422,150 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=693.11' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340 \mathrm{I}^{\prime \prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=29.43 cfs @ 8.05 hrs HW=693.11' TW=688.79' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 29.43 cfs @ 5.13 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.11^{\prime \prime}$ for 50 YR Type IA event
Inflow

396,833 cf
Outflow $=10.28$ cfs @ 8.05 hrs , Volume $=\quad 396,833 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ Primary $=10.28$ cfs @ 8.05 hrs, Volume $=396,833$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=683.26' @ 8.05 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=10.28 cfs @ 8.05 hrs HW=683.26' TW=681.80' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 10.28 cfs @ 5.82 fps)
Pond 57P: Vortech 9000

| Squilchuck Storm - 90\% Design | E-WA Short 3-hr 100 YR SDS Rainfall=1.47" |
| :--- | ---: | :--- |
| Prepared by RH2 Engineering, Inc. | Revised 10/22/14 Printed 10/22/2014 |
| HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798 ~ © 2013$ HydroCAD Software Solutions LLC | Page 229 |

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth $=0.56$ " Flow Length=4,450' Tc=13.3 min CN=88 Runoff=122.63 cfs 199,531 cf

Reach 55R: System Inlet Pipe Avg. Flow Depth=3.00' Max Vel=10.64 fps Inflow=122.63 cfs $199,531 \mathrm{cf}$ 36.0" Round Pipe $\mathrm{n}=0.025 \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '//' Capacity= 66.17 cfs Outflow=69.33 cfs $199,531 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=689.55' Inflow=68.42 cfs 195,608 cf Primary $=14.52$ cfs 72,085 cf Secondary=53.90 cfs 123,523 cf Outflow=68.42 cfs 195,608 cf

Pond 32P: 48" Unperforated Storage Peak Elev=682.05' Storage=0.052 af Inflow=14.52 cfs 72,085 cf Outflow=15.34 cfs 72,085 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.74' Storage=0.032 af Inflow=15.34 cfs 72,085 cf Discarded $=0.11$ cfs 3,956 cf Primary $=14.20$ cfs 68,129 cf Outflow=14.31 cfs $72,085 \mathrm{cf}$

Pond 39R: 36" Smooth PE Bypass Pipe

Peak Elev=687.05' Inflow=53.90 cfs 123,523 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0^{\prime} \mathrm{S}=0.0347 \mathrm{l} / \mathrm{l}$ ' Outflow=53.90 cfs $123,523 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=678.24' Inflow=53.90 cfs 123,523 cf
36.0" Round Culvert $n=0.013$ L=20.0' $\mathrm{S}=0.0340$ '/' Outflow=53.90 cfs $123,523 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=675.74' Inflow=67.88 cfs 191,652 cf 48.0" Round Culvert n=0.013 L=56.0' S=0.0104 '/' Outflow=67.88 cfs 191,652 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=674.48' Inflow=67.88 cfs 191,652 cf 48.0" Round Culvert $n=0.025 \quad \mathrm{~L}=35.0$ ' $\mathrm{S}=0.0111$ '/' Outflow=67.88 cfs $191,652 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.82' Storage=3,617 cf Inflow=0.91 cfs 5,824 cf Discarded $=0.05$ cfs $3,923 \mathrm{cf}$ Primary $=0.51 \mathrm{cfs} 1,901 \mathrm{cf}$ Outflow=0.56 cfs $5,824 \mathrm{cf}$

Pond 51P: Flow Splitter
Peak Elev=713.24' Inflow=69.33 cfs 199,531 cf
Primary=68.42 cfs 193,707 cf Secondary= 0.91 cfs 5,824 cf Outflow=69.33 cfs 199,531 cf
Pond 52P: Existing MH to be replaced Peak Elev=693.66' Inflow=68.42 cfs 195,608 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=68.42 cfs $195,608 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=697.20' Inflow=68.42 cfs 193,707 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Oufflow=68.42 cfs $193,707 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=684.90' Inflow=14.52 cfs 72,085 cf 18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Oufflow=14.52 cfs 72,085 cf

Total Runoff Area $=\mathbf{4}, \mathbf{2 7 7}, 592$ sf Runoff Volume $=199,531$ cf Average Runoff Depth $=\mathbf{0 . 5 6 "}$ 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=122.63$ cfs @ 1.13 hrs, Volume $=199,531 \mathrm{cf}$, Depth $=0.56^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.01 hrs E-WA Short 3-hr 100 YR SDS Rainfall=1.47"

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
[55] Hint: Peak inflow is 185% of Manning's capacity
[76] Warning: Detained 36,899 cf (Pond w/culvert advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.56$ " for 100 YR SDS event
Inflow $=122.63$ cfs @ 1.13 hrs, Volume $=199,531 \mathrm{cf}$
Outflow = $69.33 \mathrm{cfs} @ 1.02 \mathrm{hrs}$, Volume $=199,531 \mathrm{cf}$, Atten $=43 \%$, Lag= 0.0 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=10.64 \mathrm{fps}$, Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=5.42 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage=1,767 cf @ 1.03 hrs
Average Depth at Peak Storage=3.00'
Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs
36.0" Round Pipe
$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe
 Outflow

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.
[58] Hint: Peaked 2.21' above defined flood level

Inflow Area $=$	$4,277,592 \mathrm{sf}, 65.00 \%$	Impervious,	Inflow Depth $=0.55 "$	for 100 YR SDS event
Inflow	$=$	$68.42 \mathrm{cfs} @$	1.02 hrs , Volume $=$	$195,608 \mathrm{cf}$
Outflow	$=$	$68.42 \mathrm{cfs} @$	1.02 hrs, Volume $=$	$195,608 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$14.52 \mathrm{cfs} @$	1.02 hrs , Volume $=$	$72,085 \mathrm{cf}$
Secondary		$53.90 \mathrm{cfs} @$	1.02 hrs , Volume $=$	$123,523 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=689.55' @ 1.02 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0{ }^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=14.38 cfs @ 1.02 hrs HW=689.43' TW=684.85' (Dynamic Tailwater)
3=Culvert (Passes 14.38 cfs of 18.20 cfs potential flow)
_1=Orifice/Grate (Orifice Controls 14.38 cfs @ 10.30 fps)
Secondary OutFlow Max=53.20 cfs @ 1.02 hrs HW=689.43' TW=686.99' (Dynamic Tailwater)
-2=Culvert (Inlet Controls 53.20 cfs @ 7.53 fps)

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[93] Warning: Storage range exceeded by 0.26^{\prime}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=3)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.20$ for 100 YR SDS event
Inflow $=14.52$ cfs @ 1.02 hrs, Volume $=\quad 72,085$ cf
Outflow = 15.34 cfs @ 1.03 hrs , Volume $=\quad 72,085 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.5 min
Primary $=15.34$ cfs @ 1.03 hrs, Volume $=\quad 72,085 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=682.05' @ 1.03 hrs Surf.Area= 0.000 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage= 0.052 af
Plug-Flow detention time $=13.0 \mathrm{~min}$ calculated for 72,075 of (100% of inflow)
Center-of-Mass det. time= $13.1 \mathrm{~min}(123.0-109.9)$

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

[58] Hint: Peaked 0.02' above defined flood level

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth =	0.20" for 100 YR SDS even
Inflow	15.34 cfs @	1.03 hrs , Volume=	72,085 cf	
Outflow	14.31 cfs @	1.03 hrs , Volume=	72,085 cf,	, Atten= 7\%, Lag= 0.0 min
Discarded =	0.11 cfs @	1.03 hrs , Volume=	3,956 cf	
Primary	14.20 cfs @	1.03 hrs , Volume=	68,129 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.74' @ 1.03 hrs Surf.Area= 0.011 ac Storage= 0.032 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=8.7$ min calculated for $72,075 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=8.7$ min (131.7 -123.0)

Discarded OutFlow Max=0.11 cfs @ 1.03 hrs HW=681.74' (Free Discharge)
$L_{2=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.11 \mathrm{cfs}$)
Primary OutFlow Max=14.18 cfs @ 1.03 hrs HW=681.74' TW=675.56' (Dynamic Tailwater)
1=Culvert (Passes 14.18 cfs of 15.21 cfs potential flow)
$L_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 14.18$ cfs @ 3.00 fps)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size=48.0"W x 48.0"H => $12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment= $-5.00^{\prime} \times 12.53$ sf $\times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2$ = 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x 2 = 6.00' Base Width
6.0" Base +48.0 " Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
$2,310.0$ cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$
Outflow	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$
Primary	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$
	$123,523 \mathrm{cf}$		
cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=687.05' @ 1.02 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=53.23 cfs @ 1.02 hrs HW=686.99' TW=678.13' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{53.23}$ cfs @ 7.53 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$
Outflow	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$
Primary	$=$	$53.90 \mathrm{cfs} @$	1.02 hrs, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=678.24' @ 1.02 hrs
Flood Elev=687.57'

Primary OutFlow Max=53.24 cfs @ 1.02 hrs HW=678.13' TW=675.68' (Dynamic Tailwater)

Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow Area =	4,277,592 sf,	65.00\% Imperviou	Inflow Depth = 0.54" for 100 YR SDS event
Inflow	67.88 cfs @	1.02 hrs , Volume=	191,652 cf
Outflow	67.88 cfs @	1.02 hrs , Volume=	$191,652 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	67.88 cfs @	1.02 hrs , Volume=	191,652 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=675.74' @ 1.02 hrs
Flood Elev= 682.09'

Device	Routing	Invert	Outlet Devices
\#1	Primary	671.05'	48.0" Round Culvert
			$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=671.05' / 670.47' S=0.0104 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf

Primary OutFlow Max=67.09 cfs @ 1.02 hrs HW=675.68' TW=674.45' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 67.09 cfs @ 5.34 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

[58] Hint: Peaked 0.01' above defined flood level
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.54$ " for 100 YR SDS event Inflow $=67.88$ cfs @ 1.02 hrs, Volume $=191,652 \mathrm{cf}$
Outflow $=67.88 \mathrm{cfs} @ 1.02 \mathrm{hrs}$, Volume $=191,652 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary =
67.88 cfs @ 1.02 hrs, Volume=

191,652 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.48' @ 1.02 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.0111 \mathrm{I} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	

Primary OutFlow Max=67.09 cfs @ 1.02 hrs HW=674.45' (Free Discharge)
L1 $_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 67.09$ cfs @ 6.68 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.91 \mathrm{cfs} @$	1.02 hrs, Volume $=$	$5,824 \mathrm{cf}$
Outflow	$=$	$0.56 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$5,824 \mathrm{cf}$, Atten $=38 \%$, Lag $=120.2 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$3,923 \mathrm{cf}$
Primary	$=$	$0.51 \mathrm{cfs} @$	3.03 hrs, Volume $=$	$1,901 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.82' @ 3.03 hrs Surf.Area= 1,497 sf Storage= 3,617 cf
Plug-Flow detention time $=616.7 \mathrm{~min}$ calculated for 5,823 cf (100% of inflow)
Center-of-Mass det. time $=617.0 \mathrm{~min}(736.7-119.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Device	Routing	Invert	Outlet Devices
\#1	Primary	690.92'	18.0" Round Culvert
			$\mathrm{L}=23.0{ }^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=690.92' / 690.00' S=0.0400 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 1.77 sf
\#2	Device 1	694.76'	42.0' Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Discarded	689.00'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=686.00{ }^{\prime}$

Discarded OutFlow Max=0.05 cfs @ 3.03 hrs HW=694.82' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.51 cfs @ 3.03 hrs HW=694.82' TW=687.39' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.51 cfs of 14.78 cfs potential flow)
2=Orifice/Grate (Weir Controls $0.51 \mathrm{cfs} @ 0.79 \mathrm{fps}$)

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 713.24' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 2.92' @ 1.02 hrs

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth $=0.56$ " for 100 YR SDS event
Inflow	69.33 cfs @	1.02 hrs , Volume=	199,531 cf
Outflow	69.33 cfs @	1.02 hrs , Volume=	199,531 cf, Atten= 0\%, Lag= 0.0 min
Primary	68.42 cfs @	1.02 hrs , Volume=	193,707 cf
Secondary =	0.91 cfs @	1.02 hrs , Volume=	5,824 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 713.24' @ 1.02 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime} \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8 ' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32

Primary OutFlow Max=67.62 cfs @ 1.02 hrs HW=713.15' TW=697.04' (Dynamic Tailwater)
2=Culvert (Inlet Controls 67.62 cfs @ 9.57 fps)
-3=Orifice/Grate (Passes < 0.97 cfs potential flow)
4=Broad-Crested Rectangular Weir (Passes < 117.16 cfs potential flow)
Secondary OutFlow Max=0.90 cfs @ 1.02 hrs HW=713.15' TW=691.02' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.90 cfs @ 4.58 fps)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 693.66' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=0.55$ " for 100 YR SDS event Inflow $=68.42$ cfs @ 1.02 hrs, Volume $=195,608 \mathrm{cf}$
Outflow = $68.42 \mathrm{cfs} @ 1.02 \mathrm{hrs}$, Volume $=195,608 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary =
68.42 cfs @ 1.02 hrs, Volume= 195,608 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=693.66' @ 1.02 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=67.68 cfs @ 1.02 hrs HW=693.45' TW=689.43' (Dynamic Tailwater)
—1 $_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 67.68$ cfs @ 9.57 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 697.20' (Flood elevation advised)
Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.54$ " for 100 YR SDS event Inflow $=68.42$ cfs @ 1.02 hrs, Volume $=193,707 \mathrm{cf}$
Outflow $=68.42 \mathrm{cfs} @ 1.02 \mathrm{hrs}$, Volume $=193,707 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 68.42 cfs @ 1.02 hrs, Volume= 193,707 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=697.20' @ 1.02 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=64.49 cfs @ 1.02 hrs HW=697.04' TW=693.45' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 64.49 cfs @ 9.12 fps)

Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=0.20$ " for 100 YR SDS event
Inflow $=14.52$ cfs @ 1.02 hrs, Volume $=\quad 72,085 \mathrm{cf}$
Outflow $=14.52$ cfs @ 1.02 hrs , Volume $=\quad 72,085 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary $=14.52$ cfs @ 1.02 hrs, Volume $=\quad 72,085 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=684.90' @ 1.02 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$18.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=14.38 cfs @ 1.02 hrs HW=684.85' TW=682.00' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 14.38 cfs @ 8.14 fps)

Pond 57P: Vortech 9000

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points $\times 3$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 29S: Squilchuck Basin Runoff Area=98.200 ac 65.00\% Impervious Runoff Depth=1.38" Flow Length=4,450' Tc=13.3 min CN=88 Runoff=32.37 cfs $492,448 \mathrm{cf}$

Reach 55R: System Inlet Pipe Avg. Flow Depth=1.48' Max Vel=9.31 fps Inflow=32.37 cfs 492,448 cf 36.0" Round Pipe $n=0.025 \quad \mathrm{~L}=250.0^{\prime} \quad \mathrm{S}=0.0364$ '// Capacity= 66.17 cfs Outflow=32.35 cfs $492,448 \mathrm{cf}$

Pond 31P: Bypass Structure Peak Elev=685.73' Inflow=32.30 cfs 485,337 cf Primary $=10.45$ cfs 416,718 cf Secondary= 21.85 cfs 68,619 cf Outflow=32.30 cfs 485,337 cf

Pond 32P: 48" Unperforated Storage Peak Elev=681.81' Storage=0.052 af Inflow=10.45 cfs 416,718 cf Outflow=10.45 cfs 416,718 cf

Pond 33P: 48" Perforated CMP Peak Elev=681.57' Storage=0.031 af Inflow=10.45 cfs 416,718 cf Discarded=0.11 cfs 10,363 cf Primary=10.34 cfs 406,355 cf Outflow=10.45 cfs 416,718 cf

Pond 39R: 36" Smooth PE Bypass Pipe
Peak Elev=684.92' Inflow=21.85 cfs 68,619 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=153.0$ ' $\mathrm{S}=0.0347$ '//' Outflow=21.85 cfs $68,619 \mathrm{cf}$

Pond 40R: 36" Smooth PE Bypass Pipe
Peak Elev=674.71' Inflow=21.85 cfs 68,619 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0340$ '/' Outflow=21.85 cfs $68,619 \mathrm{cf}$

Pond 42P: Flow Converge Structure Peak Elev=673.72' Inflow=32.19 cfs 474,974 cf 48.0" Round Culvert n=0.013 L=56.0' S=0.0104 '/' Outflow=32.19 cfs 474,974 cf

Pond 44R: 48" CMP Outfall Pipe (Existing) Peak Elev=672.99' Inflow=32.19 cfs 474,974 cf 48.0" Round Culvert n=0.025 L=35.0' $\mathrm{S}=0.0111$ '/' Outflow=32.19 cfs $474,974 \mathrm{cf}$

Pond 49P: Existing (New) Pond Peak Elev=694.83' Storage=3,631 cf Inflow=0.69 cfs 40,436 cf Discarded $=0.05$ cfs $7,080 \mathrm{cf}$ Primary $=0.64$ cfs $33,325 \mathrm{cf}$ Outflow $=0.69 \mathrm{cfs} 40,406 \mathrm{cf}$

Pond 51P: Flow Splitter Peak Elev=710.83' Inflow=32.35 cfs 492,448 cf
Primary $=31.66$ cfs 452,012 cf Secondary= 0.69 cfs 40,436 cf Outflow=32.35 cfs 492,448 cf
Pond 52P: Existing MH to be replaced Peak Elev=688.91' Inflow=32.30 cfs 485,337 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=182.0$ ' $\mathrm{S}=0.0163$ '/' Outflow=32.30 cfs $485,337 \mathrm{cf}$

Pond 53P: Proposed MH
Peak Elev=693.22' Inflow=31.66 cfs 452,012 cf 36.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=130.0^{\prime} \mathrm{S}=0.0340$ '/' Oufflow=31.66 cfs $452,012 \mathrm{cf}$

Pond 57P: Vortech 9000
Peak Elev=683.31' Inflow=10.45 cfs 416,718 cf
18.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=15.0^{\prime} \mathrm{S}=0.0200$ '/' Outflow=10.45 cfs $416,718 \mathrm{cf}$

Total Runoff Area $=4,277,592$ sf Runoff Volume $=492,448$ cf Average Runoff Depth $=1.38$ " 35.00% Pervious $=1,497,157$ sf 65.00% Impervious $=2,780,435$ sf

Summary for Subcatchment 29S: Squilchuck Basin
Runoff $=32.37$ cfs @ 8.05 hrs, Volume $=492,448 \mathrm{cf}$, Depth= $1.38{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 100 YR Type IA Rainfall=2.50"

13.3 4,450 Total

Subcatchment 29S: Squilchuck Basin

Summary for Reach 55R: System Inlet Pipe

[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area = 4,277,592 sf, 65.00\% Impervious, Inflow Depth = 1.38" for 100 YR Type IA event Inflow $=32.37$ cfs @ 8.05 hrs, Volume $=\quad 492,448 \mathrm{cf}$ Outflow $=32.35$ cfs @ 8.05 hrs , Volume $=\quad 492,448 \mathrm{cf}$, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=9.31 \mathrm{fps}$, Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=5.57 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 869 cf @ 8.05 hrs
Average Depth at Peak Storage=1.48'
Bank-Full Depth=3.00' Flow Area= 7.1 sf, Capacity= 66.17 cfs

36.0" Round Pipe

$\mathrm{n}=0.025$ Corrugated metal
Length $=250.0$ ' Slope $=0.0364$ '/'
Inlet Invert= 716.80', Outlet Invert= 707.70'

Reach 55R: System Inlet Pipe

Summary for Pond 31P: Bypass Structure

Sized orifice at 16 " to match Contech's documented peak capacity for the Vortech 9000 (14 cfs) in the 100-yr 3-hr SDS.

Inflow Area =	4,277,592 sf,	65.00\% Impervious,	Inflow Depth = 1.36" for 100 YR Type IA event
Inflow	32.30 cfs @	8.05 hrs, Volume=	485,337 cf
Outflow	32.30 cfs @	8.05 hrs , Volume=	$485,337 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	10.45 cfs @	8.05 hrs , Volume=	416,718 cf
Secondary =	21.85 cfs @	8.05 hrs, Volume=	68,619 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=685.73' @ 8.05 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
\#1	Device 3	681.17'	16.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Secondary	683.52'	36.0" Round Culvert
			$\mathrm{L}=36.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=683.52' / 683.04' S=0.0133 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf
\#3	Primary	681.17'	18.0" Round Culvert
			$\mathrm{L}=37.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=681.17' / 680.86' S=0.0084 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=1.77 \mathrm{sf}$

Primary OutFlow Max=10.45 cfs @ 8.05 hrs HW=685.73' TW=683.31' (Dynamic Tailwater)
3=Culvert (Passes 10.45 cfs of 13.22 cfs potential flow)
L1=Orifice/Grate (Orifice Controls 10.45 cfs @ 7.48 fps)
Secondary OutFlow Max=21.85 cfs @ 8.05 hrs HW=685.73' TW=684.92' (Dynamic Tailwater)
L2=Culvert (Outlet Controls 21.85 cfs @ 5.46 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 31P: Bypass Structure

Summary for Pond 32P: 48" Unperforated Storage

weir not necessary in reality - only used as a baffle to discourage excessive oscillations
[93] Warning: Storage range exceeded by 0.02 '

Inflow Area $=$	$4,277,592 \mathrm{sf}, 65.00 \%$	Impervious,	Inflow Depth $=1.17 "$	for 100 YR Type IA event
Inflow	$=$	$10.45 \mathrm{cfs} @$	8.05 hrs , Volume $=$	$416,718 \mathrm{cf}$
Outflow	$=$	$10.45 \mathrm{cfs} @$	8.05 hrs , Volume $=$	$416,718 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$10.45 \mathrm{cfs} @$	8.05 hrs , Volume $=$	$416,718 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.81' @ 8.05 hrs Surf.Area= 0.000 ac Storage= 0.052 af
Flood Elev=682.46' Surf.Area= 0.000 ac Storage $=0.052$ af
Plug-Flow detention time $=7.4 \mathrm{~min}$ calculated for 416,660 cf (100% of inflow)
Center-of-Mass det. time $=7.5 \mathrm{~min}$ (850.2-842.7)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 03798$ © 2013 HydroCAD Software Solutions LLC

Pond 32P: 48" Unperforated Storage

Summary for Pond 33P: 48" Perforated CMP

Inflow Area =	4,277,592 sf,	65.00\% Imperviou	Inflow Depth = 1.17" for 100 YR Type IA event
Inflow	10.45 cfs @	8.05 hrs, Volume=	$416,718 \mathrm{cf}$
Outflow	10.45 cfs @	8.06 hrs, Volume=	$416,718 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.2 \mathrm{~min}$
Discarded =	0.11 cfs @	8.06 hrs, Volume=	10,363 cf
Primary	10.34 cfs @	8.06 hrs, Volume=	406,355 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=681.57' @ 8.06 hrs Surf.Area= 0.011 ac Storage= 0.031 af
Flood Elev=681.72' Surf.Area= 0.011 ac Storage= 0.032 af
Plug-Flow detention time $=4.6 \mathrm{~min}$ calculated for 416,660 of (100% of inflow)
Center-of-Mass det. time $=4.6 \mathrm{~min}$ (854.8-850.2)

Volume	Invert	Avail.Storage Storage Description	
\#1A	677.29'	0.013 af	$6.00^{\prime} \mathrm{W} \times 77.00^{\prime} \mathrm{L} \times 5.00{ }^{\prime} \mathrm{H}$ Field A
			0.053 af Overall - 0.022 af Embedded $=0.031$ af $\times 40.0 \%$ Voids
\#2A	677.79 '	0.022 af	CMP_Round 48×4 Inside \#1
			Effective Size $=48.0$ " $\mathrm{W} \times 48.0$ " $\mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
			Overall Size $=48.0 \mathrm{~W} \times 48.0 \mathrm{H} \times 20.00 \mathrm{~L}$
			Row Length Adjustment $=-5.00 \times 12.53 \mathrm{sf} \times 1$ rows
0.034 af Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert O	Outlet Devices
\#1	Primary	677.79' $\begin{array}{ll}\text { 18, } \\ & \mathrm{L}= \\ & \text { In } \\ & \mathrm{n}= \\ & \end{array}$	8.0" Round Culvert
			$=17.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			nlet / Outlet Invert= 677.79' / 677.46' S=0.0194 '/' Cc= 0.900
			= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Discarded	677.29 ' 2	$000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			onductivity to Groundwater Elevation $=676.25{ }^{\prime}$
\#3	Device 1	680.79' $\begin{aligned} & \\ & \\ & \\ & \\ & 2 \\ & \\ & \\ & \\ & 3\end{aligned}$	0' long x 0.8' breadth Broad-Crested Rectangular Weir
			50 (
			oef. (English) $2.742 .782 .863 .003 .11 \begin{array}{llllllll} & 3 & 3.25 & 3.29 & 3.32\end{array}$
			313.32

Discarded OutFlow Max=0.11 cfs @ 8.06 hrs HW=681.57' (Free Discharge)
L2=Exfiltration (Controls 0.11 cfs)
Primary OutFlow Max=10.34 cfs @ 8.06 hrs HW=681.57' TW=673.72' (Dynamic Tailwater)
L- $1=$ Culvert (Passes 10.34 cfs of 14.82 cfs potential flow)

Pond 33P: 48" Perforated CMP - Chamber Wizard Field A

Chamber Model = CMP_Round 48 (Round Corrugated Metal Pipe)
Effective Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H}=>12.53 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=250.5 \mathrm{cf}$
Overall Size $=48.0^{\prime \prime} \mathrm{W} \times 48.0^{\prime \prime} \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
Row Length Adjustment $=-5.00^{\prime} \times 12.53 \mathrm{sf} \times 1$ rows
4 Chambers/Row x 20.00' Long -5.00' Row Adjustment = 75.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 77.00' Base Length

1 Rows x 48.0" Wide + 12.0" Side Stone x $2=6.00$ ' Base Width
6.0" Base $+48.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=5.00^{\prime}$ Field Height

4 Chambers $\times 250.5$ cf -5.00 Row Adjustment $\times 12.53$ sf $\times 1$ Rows $=939.5$ cf Chamber Storage
2,310.0 cf Field -939.5 cf Chambers $=1,370.5$ cf Stone $\times 40.0 \%$ Voids $=548.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,487.7 \mathrm{cf}=0.034$ af
Overall Storage Efficiency = 64.4\%
4 Chambers
85.6 cy Field
50.8 cy Stone

Pond 33P: 48" Perforated CMP

Summary for Pond 39R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$21.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Outflow	$=$	$68,619 \mathrm{cf}$	
Primary	$=$	$21.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$
$68,619 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	$28.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$68,619 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=684.92' @ 8.05 hrs
Flood Elev=687.34'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	683.04^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=153.0^{\prime}$ CPP, square edge headwall, Ke=0.500	
		Inlet / Outlet Invert= $683.044^{\prime} / 677.73^{\prime} \mathrm{S}=0.0347 \mathrm{'}^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=21.85 cfs @ 8.05 hrs HW=684.92' TW=674.71' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~}^{21.85}$ cfs @ 4.67 fps)
Pond 39R: 36" Smooth PE Bypass Pipe

Summary for Pond 40R: 36" Smooth PE Bypass Pipe

Inflow	$=$	$21.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$
Outflow	$=$	$68,619 \mathrm{cf}$	
Primary	$=$	$21.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$
$68,619 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$			
	$28.85 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$68,619 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=674.71' @ 8.05 hrs
Flood Elev=687.57'

Primary OutFlow Max=21.85 cfs @ 8.05 hrs HW=674.71' TW=673.72' (Dynamic Tailwater)

Pond 40R: 36" Smooth PE Bypass Pipe

Summary for Pond 42P: Flow Converge Structure

Inflow	4,277,592	65.00\% Imperviou	Inflow Depth = 1.33" for 100 YR Type IA event
Inflow	32.19 cfs @	8.05 hrs, Volume=	474,974 cf
Outflow	32.19 cfs @	8.05 hrs , Volume=	474,974 cf, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	32.19 cfs @	8.05 hrs, Volume=	474,974 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=673.72' @ 8.05 hrs
Flood Elev= 682.09'
Device Routing Invert Outlet Devices
\#1 Primary
671.05' 48.0" Round Culvert
$\mathrm{L}=56.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 671.05' / 670.47' S=0.0104 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 12.57 sf
Primary OutFlow Max=32.18 cfs @ 8.05 hrs HW=673.72' TW=672.99' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 32.18 cfs @ 5.12 fps)

Pond 42P: Flow Converge Structure

Summary for Pond 44R: 48" CMP Outfall Pipe (Existing)

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.33$ " for 100 YR Type IA event
Inflow = 32.19 cfs @ 8.05 hrs, Volume $=\quad 474,974$ cf Outflow $=32.19$ cfs @ 8.05 hrs , Volume $=\quad 474,974 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=32.19$ cfs @ 8.05 hrs, Volume $=\quad 474,974$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=672.99' @ 8.05 hrs
Flood Elev= 674.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	670.47^{\prime}	$48.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=35.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $670.47^{\prime} / 670.08^{\prime} \mathrm{S}=0.01111^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.025$ Corrugated metal, Flow Area $=12.57 \mathrm{sf}$	

Primary OutFlow Max=32.18 cfs @ 8.05 hrs HW=672.99' (Free Discharge)
—1=Culvert (Barrel Controls 32.18 cfs @ 5.50 fps)
Pond 44R: 48" CMP Outfall Pipe (Existing)

Summary for Pond 49P: Existing (New) Pond

Inflow	$=$	$0.69 \mathrm{cfs} @$	8.05 hrs, Volume $=$	$40,436 \mathrm{cf}$
Outflow	$=$	$0.69 \mathrm{cfs} @$	8.07 hrs, Volume $=$	$40,406 \mathrm{cf}$, Atten $=0 \%$, Lag $=1.4 \mathrm{~min}$
Discarded	$=$	$0.05 \mathrm{cfs} @$	8.07 hrs, Volume $=$	$7,080 \mathrm{cf}$
Primary	$=$	$0.64 \mathrm{cfs} @$	8.07 hrs, Volume $=$	$33,325 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=694.83' @ 8.07 hrs Surf.Area= 1,500 sf Storage= 3,631 cf
Plug-Flow detention time= 177.4 min calculated for 40,400 cf (100% of inflow)
Center-of-Mass det. time $=177.3 \mathrm{~min}(1,038.1-860.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	689.00^{\prime}	$3,895 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
689.00	44	0	0
690.00	182	113	113
691.00	351	267	380
692.00	579	465	845
693.00	803	691	1,536
694.00	1,174	989	2,524
695.00	1,568	1,371	3,895

Discarded OutFlow Max=0.05 cfs @ 8.07 hrs HW=694.83' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(C o n t r o l s ~} 0.05 \mathrm{cfs}$)
Primary OutFlow Max=0.64 cfs @ 8.07 hrs HW=694.83' TW=688.90' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 0.64 cfs of 14.80 cfs potential flow)
2=Orifice/Grate (Weir Controls 0.64 cfs @ 0.85 fps)

Squilchuck Storm - 90\% Design Prepared by RH2 Engineering, Inc. HydroCAD® 10.00 s/n 03798 © 2013 HydroCAD Software Solutions LLC

Pond 49P: Existing (New) Pond

Summary for Pond 51P: Flow Splitter

[57] Hint: Peaked at 710.83' (Flood elevation advised)
[62] Hint: Exceeded Reach 55R OUTLET depth by 1.65' @ 8.05 hrs

Inflow Area	4,277,592 sf,	65.00\% Imperviou	Inflow Depth = 1.38" for 100 YR Type IA event
Inflow	32.35 cfs @	8.05 hrs, Volume=	492,448 cf
Outflow	32.35 cfs @	8.05 hrs, Volume=	$492,448 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	31.66 cfs @	8.05 hrs , Volume=	452,012 cf
Secondary =	0.69 cfs @	8.05 hrs, Volume=	40,436 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 710.83' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
\#1	Secondary	708.20'	6.0" Round Culvert
			$\mathrm{L}=200.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 708.20' / 707.00' S=0.0060 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Primary	707.70'	36.0" Round Culvert
			$\mathrm{L}=180.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 707.70' / 693.32' S=0.0799 '/' Cc= 0.900
			$\mathrm{n}=0.025$ Corrugated metal, Flow Area= 7.07 sf
\#3	Device 2	707.70'	4.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#4	Device 2	709.20'	4.5' long x 0.8' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00
			2.50
			Coef. (English) 2.742 .782 .863 .003 .113 .183 .253 .293 .32
			3.313 .32
Primary OutFlow Max=31.66 cfs @ 8.05 hrs HW=710.83' TW=693.22' (Dynamic Tailwater)			
L-2=Culvert (Passes 31.66 cfs of 43.49 cfs potential flow)			
- $3=$ Orifice/Grate (Orifice Controls 0.72 cfs @ 8.29 fps)			
4=Broad-Crested Rectangular Weir (Weir Controls 30.93 cfs @ 4.21 fps)			

Secondary OutFlow Max=0.69 cfs @ 8.05 hrs HW=710.83' TW=694.83' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.69 cfs @ 3.52 fps)

Pond 51P: Flow Splitter

Hydrograph

Summary for Pond 52P: Existing MH to be replaced
[57] Hint: Peaked at 688.91' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=1.36$ for 100 YR Type IA event Inflow $=32.30$ cfs @ 8.05 hrs, Volume $=\quad 485,337 \mathrm{cf}$ Outflow = $32.30 \mathrm{cfs} @ 8.05 \mathrm{hrs}$, Volume $=\quad 485,337 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=32.30$ cfs @ 8.05 hrs, Volume $=\quad 485,337 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=688.91' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	686.49^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=182.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $686.49^{\prime} / 683.52^{\prime} \quad \mathrm{S}=0.0163^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 7.07 sf	

Primary OutFlow Max=32.29 cfs @ 8.05 hrs HW=688.91' TW=685.73' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 32.29 cfs @ 5.29 fps)
Pond 52P: Existing MH to be replaced

Summary for Pond 53P: Proposed MH

[57] Hint: Peaked at 693.22' (Flood elevation advised)
Inflow Area $=4,277,592 \mathrm{sf}$, 65.00% Impervious, Inflow Depth $=1.27$ " for 100 YR Type IA event Inflow $=31.66$ cfs @ 8.05 hrs, Volume $=\quad 452,012 \mathrm{cf}$ Outflow = 31.66 cfs @ 8.05 hrs , Volume $=\quad 452,012 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=31.66$ cfs @ 8.05 hrs, Volume $=\quad 452,012 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=693.22' @ 8.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	690.84^{\prime}	$36.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=130.0^{\prime}$ CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $690.84^{\prime} / 686.42^{\prime} \quad \mathrm{S}=0.0340$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=7.07 \mathrm{sf}$	

Primary OutFlow Max=31.66 cfs @ 8.05 hrs HW=693.22' TW=688.91' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 31.66 cfs @ 5.26 fps)
Pond 53P: Proposed MH

Summary for Pond 57P: Vortech 9000

Inflow Area $=4,277,592$ sf, 65.00% Impervious, Inflow Depth $=1.17$ " for 100 YR Type IA event

Inflow $=$	$10.45 \mathrm{cfs} @$	8.05 hrs, Volume $=$
	$416,718 \mathrm{cf}$	

Outflow $=10.45 \mathrm{cfs} @ 8.05 \mathrm{hrs}$, Volume $=\quad 416,718 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min Primary $=10.45$ cfs @ 8.05 hrs, Volume $=\quad 416,718$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3
Peak Elev=683.31' @ 8.05 hrs
Flood Elev=685.11'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	680.69^{\prime}	$\mathbf{1 8 . 0}{ }^{\prime \prime}$ Round Culvert
		$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $680.69^{\prime} / 680.39^{\prime} \mathrm{S}=0.0200$ '/' $\mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=1.77 \mathrm{sf}$	

Primary OutFlow Max=10.45 cfs @ 8.05 hrs HW=683.31' TW=681.81' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 10.45 cfs @ 5.91 fps)
Pond 57P: Vortech 9000

Appendix E Soils

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Chelan County Area, Washington (Parts of Chelan and Kittitas Counties)

Squilchuck Stormwater Outfall

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state_offices/).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made5
Soil Map 7
Soil Map 8
Legend 9
Map Unit Legend 10
Map Unit Descriptions 10
Chelan County Area, Washington (Parts of Chelan and Kittitas Counties) 12
CcB-Cashmont sandy loam, 3 to 8 percent slopes 12
CeD-Cashmont stony sandy loam, 0 to 25 percent slopes 12
PhB-Peshastin loam, 3 to 8 percent slopes 13
PhC-Peshastin loam, 8 to 15 percent slopes 14
PIE-Peshastin stony loam, 25 to 45 percent slopes 15
W-Water. 16
WeA-Wenatchee silt loam, 0 to 3 percent slopes 16
WeB-Wenatchee silt loam, 3 to 8 percent slopes 17
References 18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.
Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.
While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.
Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features

(0) Blowout

B Borrow Pit
相 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(8) Landfill
A. Lava Flow

Marsh or swamp
R Mine or Quarry
(C) Miscellaneous Water

- Perennial Water
* Rock Outcrop
+ Saline Spot
$\therefore \quad$ Sandy Spot
음 Severely Eroded Spot
- Sinkhole

2. Slide or Slip
(2) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Chelan County Area, Washington (Parts of Chelan and Kittitas Counties)
Survey Area Data: Version 8, Jun 28, 2012
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 25, 2010—Oct 17, 2010

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Chelan County Area, Washington (Parts of Chelan and Kittitas Counties) (WA607)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CcB	Cashmont sandy loam, 3 to 8 percent slopes	1.0	0.4\%
CeD	Cashmont stony sandy loam, 0 to 25 percent slopes	10.0	3.4\%
PhB	Peshastin loam, 3 to 8 percent slopes	26.1	9.0\%
PhC	Peshastin loam, 8 to 15 percent slopes	95.6	32.9\%
PIE	Peshastin stony loam, 25 to 45 percent slopes	27.7	9.6\%
W	Water	0.9	0.3\%
WeA	Wenatchee silt loam, 0 to 3 percent slopes	122.1	42.1\%
WeB	Wenatchee silt loam, 3 to 8 percent slopes	6.9	2.4\%
Totals for Area of Interest		290.4	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the
contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. AlphaBeta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Chelan County Area, Washington (Parts of Chelan and Kittitas Counties)

CcB—Cashmont sandy loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 1,200 to 1,800 feet
Mean annual precipitation: 8 to 12 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 140 to 180 days

Map Unit Composition

Cashmont and similar soils: 100 percent

Description of Cashmont

Setting

Landform: Hillslopes, alluvial fans, terraces
Landform position (two-dimensional): Footslope
Parent material: Alluvium, glaciofluvial deposits or ablation till

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to $5.95 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.3 inches)
Interpretive groups
Farmland classification: Prime farmland if irrigated
Land capability classification (irrigated): 3e
Land capability (nonirrigated): 3e
Hydrologic Soil Group: A
Typical profile
0 to 8 inches: Sandy loam
8 to 21 inches: Gravelly sandy loam
21 to 60 inches: Gravelly sandy loam

CeD—Cashmont stony sandy loam, 0 to 25 percent slopes

Map Unit Setting

Elevation: 1,200 to 1,800 feet
Mean annual precipitation: 8 to 11 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 140 to 180 days

Map Unit Composition

Cashmont and similar soils: 100 percent

Description of Cashmont

Setting

Landform: Hillslopes, alluvial fans, terraces
Landform position (two-dimensional): Footslope
Parent material: Alluvium, glaciofluvial deposits or ablation till

Properties and qualities

Slope: 0 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to $5.95 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.8 inches)
Interpretive groups
Farmland classification: Farmland of unique importance
Land capability classification (irrigated): 4e
Land capability (nonirrigated): 4s
Hydrologic Soil Group: A
Typical profile
0 to 21 inches: Stony sandy loam
21 to 60 inches: Gravelly sandy loam

PhB—Peshastin loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 700 to 2,400 feet
Mean annual precipitation: 8 to 12 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 175 to 190 days

Map Unit Composition

Peshastin and similar soils: 100 percent

Description of Peshastin

Setting

Landform: Terraces
Parent material: Till and outwash with a component of loess and volcanic ash in the surface

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to $1.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches

Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 4.7 inches)
Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability classification (irrigated): 3e
Land capability (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: DRY LOAMY 10-16 PZ (R008XY101WA)

Typical profile

0 to 7 inches: Loam
7 to 18 inches: Loam
18 to 60 inches: Very cobbly sandy loam

PhC—Peshastin loam, 8 to 15 percent slopes

Map Unit Setting

Elevation: 700 to 2,400 feet
Mean annual precipitation: 8 to 12 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 175 to 190 days

Map Unit Composition

Peshastin and similar soils: 100 percent

Description of Peshastin

Setting

Landform: Terraces
Parent material: Till and outwash with a component of loess and volcanic ash in the surface

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to $1.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water capacity: Low (about 4.7 inches)
Interpretive groups
Farmland classification: Farmland of unique importance
Land capability classification (irrigated): 4e
Land capability (nonirrigated): 3e

Hydrologic Soil Group: B
Ecological site: DRY LOAMY 10-16 PZ (R008XY101WA)

Typical profile

0 to 7 inches: Loam
7 to 18 inches: Loam
18 to 60 inches: Very cobbly sandy loam

PIE—Peshastin stony loam, 25 to $\mathbf{4 5}$ percent slopes

Map Unit Setting

Elevation: 700 to 2,400 feet
Mean annual precipitation: 8 to 12 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 140 to 190 days

Map Unit Composition

Peshastin and similar soils: 100 percent

Description of Peshastin

Setting

Landform: Terraces
Parent material: Till and outwash with a component of loess and volcanic ash in the surface

Properties and qualities

Slope: 25 to 45 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to $1.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 5.1 inches)

Interpretive groups

Farmland classification: Not prime farmland
Land capability (nonirrigated): 6e
Hydrologic Soil Group: B
Ecological site: DRY STONY 10-16 PZ (R008XY201WA)

Typical profile

0 to 7 inches: Stony loam
7 to 18 inches: Loam
18 to 60 inches: Very cobbly sandy loam

W-Water

Map Unit Composition

Water: 100 percent

Description of Water

Setting
Landform: Alluvial cones

WeA-Wenatchee silt loam, 0 to 3 percent slopes

Map Unit Setting

Mean annual precipitation: 9 to 12 inches
Mean annual air temperature: 48 to 52 degrees F
Frost-free period: 150 to 185 days

Map Unit Composition

Wenatchee and similar soils: 100 percent

Description of Wenatchee

Setting

Landform: Terraces
Parent material: Alluvium with a minor amount of loess and volcanic ash in the surface

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.5 inches)
Interpretive groups
Farmland classification: Prime farmland if irrigated
Land capability classification (irrigated): 2 e
Land capability (nonirrigated): 3s
Hydrologic Soil Group: C
Typical profile
0 to 8 inches: Silt loam
8 to 17 inches: Silt loam
17 to 60 inches: Sandy clay loam

WeB-Wenatchee silt loam, 3 to 8 percent slopes

Map Unit SettingMean annual precipitation: 9 to 12 inchesMean annual air temperature: 48 to 52 degrees F
Frost-free period: 150 to 185 days
Map Unit CompositionWenatchee and similar soils: 100 percent
Description of Wenatchee
Setting
Landform: Terraces
Parent material: Alluvium with a minor amount of loess and volcanic ash in thesurface
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low tomoderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.5 inches)
Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability classification (irrigated): 3e
Land capability (nonirrigated): 3e
Hydrologic Soil Group: C
Typical profile
0 to 8 inches: Silt loam
8 to 17 inches: Silt loam
17 to 60 inches: Sandy clay loam

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/
United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

[^0]: Randy L. Asplund, P.E.
 Principal

[^1]: Angi Waligorski, P.E.
 Project Manager

