```
LIST OF APPENDICES
Chelan County

\section*{APPENDICES}

\section*{Appendix 1: Forecast Methodology}

Appendix 2: Public Involvement
Appendix 3: Comment Resolution Matrix
Appendix 4: Structures Concept Report
Appendix 5: AutoTURN Graphics
Appendix 6: Traffic Analysis Reports
Appendix 7: Large Scale Graphics
Appendix 8: Cost Estimate

\section*{Appendix 1: Forecast Methodology}

\section*{Traffic Volume Forecast Methodology EXISTING TRAFFIC VOLUMES}

PM peak period turning movement counts were collected for 15 study intersections in 2012, 2013 and mostly 2014. Older counts were adjusted to a 2014 base year.
Heavy vehicles were counted by individual movement and identified separately from passenger vehicles.

The actual peak hour of each intersection was used (ranging between 3:00 PM to 4:00 PM and 5:00 PM to 6:00 PM).
US 2/Hay Canyon Rd and US 2/Aplets Way were counted Tuesday, June 10, 2014. US 2/Cotlets Way was counted Thursday, June 5, 2014. The volumes on SR 2 were notably higher on the June 5 count, so the higher through-traffic volumes were balanced on SR 2 through the other two intersections.
Spot balancing was also performed at locations in Cashmere when counts conducted on different days didn't balance adequately.

\section*{2040 FORECAST}

\section*{Historical Regional Growth Trends}

Traffic volume growth on SR 2 was evaluated for the 20-year period between 1990 and 2010 based on data in the WSDOT Annual Traffic Report (ATR). (NOTE: MP 113.10 did not have
data for 1990 through 1992, so 17-year growth from 1993 to 2010 was used.)
Chelan County population growth trends were evaluated for the same time period based on information available from the Office of Financial Management (OFM).
The traffic growth history and population growth history were compared to calculate a factor to apply to population forecasts to yield traffic growth forecasts.
The following is a summary of the traffic and population growth trends. A population growth-to-traffic growth factor was calculated comparing historic traffic and population growth
trends for the same time periods.
The two calibration factors were very similar and the 0.886 factor was used because it represented the full 20 -year sample period and yields a slightly more conservative (higher) growth projection.
2040 Regional Growth Projection
WVTC, working with WSDOT, has identified a region-wide traffic volume growth projection for State Routes in the Wenatchee area for use in the Wenatchee area travel demand model. The rate used was \(1.2 \%\) annual (straight-line) growth. SR 2 east of Cashmere is an external station to the Wenatchee model.

Table One: Historical Traffic Volume Growth Trends
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{c|}{ Location } & \multicolumn{5}{|c|}{ Annual Average Daily Traffic } & \\
\cline { 2 - 8 } & 1990 & 1993 & 2010 & \begin{tabular}{c} 
Total \\
Growth
\end{tabular} & \begin{tabular}{c} 
Annual \\
Growth
\end{tabular} & \begin{tabular}{c} 
Population \\
Growth \\
Rate (see \\
Table Two)
\end{tabular} & \begin{tabular}{c} 
Calibration \\
Factor
\end{tabular} \\
\hline \begin{tabular}{l} 
US 2-MP 113.10 NW \\
of Red Apple Road
\end{tabular} & & 17,036 & 20,942 & \(22.93 \%\) & \(1.35 \%\) & \(1.67 \%\) & 0.808 \\
\hline \begin{tabular}{l} 
US 2-MP 104.84 \\
West of Cashmere, \\
East of US 2/US 97 \\
Junction
\end{tabular} & 11,235 & & 15,086 & \(34.28 \%\) & \(1.71 \%\) & \(1.93 \%\) & 0.886 \\
\hline
\end{tabular}

Table Two: Historical Population Growth Trends
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Location } & \multicolumn{3}{|c|}{ Population } & \multicolumn{2}{c|}{ Annual Growth } \\
\cline { 2 - 6 } & 1990 & 1993 & 2010 & \(1990-2010\) & \(1993-2010\) \\
\hline Chelan County & 52,250 & 56,423 & 72,453 & \(1.93 \%\) & \(1.67 \%\) \\
\hline
\end{tabular}

A traffic growth rate forecast was prepared using other data for comparison to the \(1.2 \%\) used by WVTC.
The OFM population forecast for Chelan County was reviewed for low, medium and high growth projections. The 2010 to 2040 population forecast yields the following annual population growth rates (straight-line):
- Low \(-(72,453\) to 76,706\()=0.20 \%\)
- Medium - \((72,453\) to 89,246\()=0.77 \%\)
- High \(-(72,453\) to 120,084\()=2.19 \%\)

Applying the 0.886 population growth-to-traffic growth calibration factor yields the following calibrated annual traffic growth rates:
- Low-0.18\%
- Medium-0.68\%
- High - 1.94\%

After discussion with WVTC and the City of Cashmere it was determined appropriate to use the \(1.2 \%\) annual growth rate for through traffic on SR 2, which is consistent with the Wenatchee Travel Demand Model and within the predicted range between medium (0.68\%) and high (1.94\%) growth.
For the City of Cashmere it was determined appropriate to use the medium growth rate
( \(0.68 \%\) ) which was rounded to \(0.70 \%\) for this calculation.
To estimate the "baseline" 2040 traffic volume scenario, the existing 2014 PM peak hour volumes were grown by 26 years of the appropriate growth rate. In addition to global growth rates, traffic estimated for the 5.25 acre upland parcels at the Port of Chelan site between Sunset Highway and Mill Road was included in the forecast. Industrial Park landuse was assumed with trucks comprising 13\% of the total traffic generated by the site.

\section*{Bridge Alternatives}

For each bridge alternative, traffic adjustments were manually entered to account for predicted traffic volume shifts based on the access differences between alternatives. For example, Alternative 1 assumes the Goodwin Road Bridge completely closed, so existing passenger vehicle trips were re-routed away from Goodwin Road to other roadways.
The attached spreadsheet provides the existing 2014 PM peak hour traffic volumes and 2040 PM peak hour forecast for a no-action alternative, Goodwin Road Bridge removal scenario and three additional build alternatives.

\title{
Appendix 2: Public Involvement
}

\section*{Public Involvement}

\section*{Outreach Efforts}

Public outreach and community involvement, especially with the Cashmere community, is a critical component of this study. Public outreach efforts started early in the process and have continued throughout the study. Active engagement began by meeting with a Technical Advisory Committee made up of the key jurisdictional interest: Chelan County, City of Cashmere, Chelan-Douglas Transportation Council, Port of Chelan, and WSDOT. Radio spots were conducted as part of weekly talk shows by the Chair of the Chelan County Commissioners and the Mayor of Cashmere. Early interviews were held with Stakeholder groups such as: freight haulers, fruit tree industry representatives, local truck dependent industries, and Emergency Services representatives. A public workshop held in Cashmere, including a "kick-off" open house and a Chamber of Commerce membership meeting, were held to help identify the public's perception and potential ideas for improvement.

\section*{Public Comment Summary}

Prior to preparing the Draft Study, more than one hundred members of the public, business community, and local government service providers had the opportunity to share their

Table A2.1: Public Involvement Meeting Overview
\begin{tabular}{|c|c|c|c|}
\hline Group & Date & Held At & Attendance \\
\hline \multirow{3}{*}{TAC Meeting} & August 7, 2014 & Chelan Douglas Transportation Council (CDTC) & 12 \\
\hline & September 3, 2014 & CDTC & 11 \\
\hline & January 2015 & To Be Determined & 2 meetings after TAC meeting and final draft review \\
\hline \multirow{2}{*}{Open Houses} & September 16, 2014 & Cashmere & 60 \\
\hline & October 22,2014 & Cashmere & 30 \\
\hline CDTC & January 2015 & TBD & 2 meetings after TAC meeting and final draft review \\
\hline \multirow[b]{2}{*}{Board of County Commissioners} & January 2015 & Confluence Tech Center & Monthly Board Meetings \\
\hline & January 2015 & Commissioners' Chambers & Post CDTC Review \\
\hline
\end{tabular}
opinions of the transportation issues surrounding the three primary access points to Cashmere and local traffic issues. With the release of the draft study, additional opportunities for input will be available through similar methods as presented in Table A2.1.
Raised comments during the open houses and stakeholder meetings suggested an emphasis on replacing the Goodwin Bridge and rail overcrossing. Support for the replacement ranged from critical economic development access to the City's west side industrial properties, to concerns for emergency vehicle access to the south portion of Cashmere when trains are blocking at grade crossings.
Generally, comments about the Aplets/Hwy 2/97 intersection accentuated adding an eastbound
\(2 / 97\) on ramp to reduce congestion when someone is turning left or the light does not accommodate a free right turn. Several suggestions were made for necessary improvements to the Cotlets/Tichenal/ Hwy \(2 /\) Hwy 97 intersection such as moving the intersection east or west, knowing that moving either direction would require some ROW purchase and potentially removing some commercial businesses. A complete listing of the comments is included in the next page.

\section*{Cashmere Open House Public Comments}

The open house for the Highway 2/97
Cashmere Area Transportation Study held on September \(16^{\text {th }}, 2014\) was well attended with over 60 members of the community.

Chelan County Commissioner Keith Goehner and Cashmere Mayor Jeff Gomes began the open house with some general comments about the importance of the study, emphasizing the need to replace the current Goodwin Bridge. If the plan is not acted upon, the structure is expected to be closed within the next 10 years.
It was generally observed by most attendees that replacing the bridge will be necessary for adequate circulation, emergency vehicle access, school bus access. and heavy truck traffic. Overall, all three access points are critical for general circulation of the whole area.

\section*{Community Comments}

The following comments were collected at the September \(16^{\text {th }}\) Open House. They have been kept in their original language and structure.
- Exiting left from Wenatchee: make 2 lanes to turn, so those turning left do not block those going into Cashmere - at Colet Way.
- Eastbound on ramp at tree top.
- Looks like there is some potential for right turn storage - add acceleration lane/free right.
- Works OK now, no need to fix it
- Going eastbound on Hwy 2 you have an option to use free right at Cotlets.
- An adequate Goodwin would relieve some congestion on Aplets.
- Stage development: 1. Work on Goodwin; 2. Save wear and tear on Cotlets - maybe different controls at Hwy 2.
- More traffic on Cotlet and Aplet.
- Emergency access grade separation.
- If grade separation is best, use grade separated over pass.
- Trains will block everything without crossing.
- Sunset need sidewalks, lights, drainage, etc. - freight route with bridge.
- Need left turn for west-south capacity.
- The turning radius for trucks turning right off of Titchenal is widely recognized as too tight and to close to the highway.
- Consider adding an eastbound highway access directly from the east end of Titchenal Way.
- The Cotlets intersection could move to the east as long as it doesn't go as far as the old TreeTop [sic] building.
- Can a left turn lane be created in front of Rusty's? Left turn into Rusty's and onto Titchenal frequently block through traffic into town.
- Can a right in/right out with acceleration lane to access Titchenal be created?
- Drive in traffic to Rusty's backs onto Cotlet Way blocking traffic.
- What about a second traffic signal just west of Titchenal to control traffic in/out of Titchenal?

\section*{Additional Summarized Comments}
- There was considerable discussion regarding Roundabouts. There were several people who totally opposed them, while 3 to 4 spoke up in favor of them.
- Auto oriented businesses, such as Rusty's Drive-in drive up and drive through. Several attendees were of the opinion that local walk-up customers are relatively few in number. This could have implications for any potential concepts to reconfigure the Cotlets/Titchenal intersection in a manner that would impact or relocate Rusty's.
- Asked if Rusty's could be relocated, several people all agreed as long as they stayed in the general area.
- Multiple individuals voiced frustration with the circulation problems and conflicting movements at Cotlets/Titchenal intersection.

\section*{Appendix 3: Comment Resolution Matrix}

\section*{Cashmere Area Transportation Study}

\section*{Review Comment and Resolution Form (RCR)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Submittal Stage: Preliminary} & \multicolumn{2}{|l|}{Review Type: Milestone Review} & \multicolumn{2}{|l|}{Package Description: Traffic Analysis} & \multicolumn{2}{|l|}{Package \({ }^{\dagger}\)} \\
\hline Due Da & 1/14/14 & & Position/Agency: Chelan County & & viewer: & & mail: & \\
\hline \[
\begin{aligned}
& \text { Item } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
*Dwg. No. \\
Page No.
\end{tabular} & Reviewer Last Name & Comments & \begin{tabular}{l}
Initial \\
Code \({ }^{\dagger}\)
\end{tabular} & \begin{tabular}{l}
Resp. \\
Person
\end{tabular} & Response/Transfer Discipline & Final Disposition
Code
Date & QC \\
\hline \multicolumn{9}{|l|}{Build Alternatives} \\
\hline 1 & Goodwin RD & WSDOT & Consider a US 2 roundabout for Alternative 3 "Goodwin Bridge". & A & RH & Will add roundabout option for Goodwin. & & \\
\hline 2 & Goodwin RD & WSDOT & Consider bicycle and pedestrian accommodations & A & RH & Crosswalks added. Bikes shall use widened sidewalks and crosswalks to cross US 2. & & \\
\hline 3 & Orchard Rd & WSDOT & Alternative 4 "Orchard Bridge" Options adds another signal on the US2. If Hay Canyon signal isn't removed, two signals will need to be coordinated. US 2 will have more delay. & A & RH & Would recommend removal of the signal at Hay Canyon, and change SB Hay Canyon to US 2 to Stop controlled movement. & & \\
\hline 4 & Orchard Rd & WSDOT & Consider bicycle and pedestrian accommodations. & A & RH & Crosswalks added. Bikes shall use widened sidewalks and crosswalks to cross US 2. & & \\
\hline 5 & Evergreen Dr & WSDOT & Alternative 5 "Evergreen Bridge" Options adds another signal on the US 2. If Hay Canyon signal isn't removed, two signals will need to be coordinated. US 2 will have more delay. & A & RH & Would recommend removal of the signal at Hay Canyon, and change SB Hay Canyon to US 2 to Stop controlled movement. & & \\
\hline 6 & Evergreen Dr & WSDOT & Consider bicycle and pedestrian accommodations. & A & RH & Crosswalks added. Bikes shall use widened sidewalks and crosswalks to cross US 2. & & \\
\hline 7 & Cottage Ave & WSDOT & Need to model the PM peak queue for the Cottage Ave/US 2 roundabout option. The small roundabout queue should not block the large roundabout. & A & YZ & The PM peak queue for the Cottage Ave/US 2 roundabout option has been analyzed. The southbound queue from the small roundabout is less than 100' during the peak hours. Given the more than \(300^{\prime}\) queuing space between these 2 roundabout, the queue impact would be minimum. & & \\
\hline 8 & Cottage Ave & WSDOT & Close proximity of Museum St., E. Cashmere Rd and business accesses to small roundabout will need to be addressed. & A & RH & Access would be coordinated and provided for local businesses. & & \\
\hline 9 & Cottage Ave & WSDOT & Add right turn bypass and extend to existing acceleration lane for AM peak traffic. EB US2 & A & RH & Would be addressed in final design. Traffic analysis shows that roundabout would function adequately without the addition of right turn lanes. & & \\
\hline 10 & Cottage Ave & WSDOT & Define the access plan for the businesses at the roundabout. & A & RH & Access would be coordinated and provided for local businesses. & & \\
\hline
\end{tabular}

\section*{Cashmere Area Transportation Study}

\section*{Review Comment and Resolution Form (RCR)}
```

A. Accept comment - correct, add to, or clarify plans

```
D. Dismiss comment
C. Clarify or discuss and resolve prior to next design phase
R. Resolve comment in next design phase

PI. Preference comment to incorporate
PD. Preference comment, not incorporated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Submittal Stage: Preliminary} & \multicolumn{2}{|l|}{Review Type: Milestone Review} & \multicolumn{2}{|l|}{Package Description: Traffic Analysis} & \multicolumn{2}{|l|}{Package \({ }^{\dagger}\)} \\
\hline \multicolumn{3}{|l|}{Due Date: 11/14/14} & \multicolumn{2}{|l|}{Position/Agency: Chelan County} & \multicolumn{2}{|l|}{Reviewer:} & \multicolumn{2}{|l|}{Email:} \\
\hline \begin{tabular}{l}
Item \\
No.
\end{tabular} & *Dwg. No. Page No. & Reviewer Last Name & Comments & Initial Code \({ }^{\dagger}\) & \begin{tabular}{l}
Resp. \\
Person
\end{tabular} & Response/Transfer Discipline & Final Disposition Code Date & QC \\
\hline 11 & Cottage Ave / ALT & WSDOT & Need to clarify the intersection control for the Cottage Ave/US 2 roundabout/traffic signal option. Titchenal and Cottage should probably be stop controlled both westbound and eastbound. Cotlets southbound into the intersection will likely need to be free flow for rights and lefts to prevent queues from blocking the highway roundabout. & A & RH & Traffic analysis shows that stop control on Titchenal would result in LOS F, and supports roundabout or signalizing intersection. & & \\
\hline 12 & Cottage Ave / ALT & WSDOT & Westbound chicane on US 2 seems to be missing. & A & RH & Roundabout would be refined in final design. Turning templates and speed curves will be supplied. & & \\
\hline 13 & General & City of Cashmere & If a new bridge is constructed, consider accommodations for future utilities. Hangers for water, sewer, and dry utilities and block outs in the abutment wall could be installed now & A & RH & Accommodations for utilities as described would be addressed in final design. & & \\
\hline 14 & Aplets Way & City of Cashmere & Consider shifting intersection north to avoid impacts to Aplets Way bridge. & A & RH & Would be addressed in final design. & & \\
\hline 15 & Aplets Way & City of Cashmere & Consider two incoming lanes on both north and south side of roundabout. See MUTCD Figure 3C-8. & A & RH & Would be addressed in final design. & & \\
\hline 16 & Aplets Way & City of Cashmere & For single lanes on the side street, consider MUTCD Figure 3C-4 & A & RH & Would be addressed in final design. & & \\
\hline 17 & Aplets Way & City of Cashmere & Roundabout inscribed circle seems small for a double lane roundabout that needs to accommodate a high volume of freight traffic. Lanes seem small for freight traffic. Should it be more of an oval-about to reduce deflection for US2 traffic? Turning templates need to be analyzed to ensure the impact footprint isn't sufficiently more than what is shown. & A & RH & Roundabout would be refined in final design. Turning templates and speed curves will be supplied. & & \\
\hline 18 & Aplets Way & City of Cashmere & How will this intersection accommodate pedestrian and bike traffic? & A & RH & Crosswalks added. Bikes shall use widened sidewalks and crosswalks to cross US 2. & & \\
\hline
\end{tabular}

\section*{Cashmere Area Transportation Study}

\section*{Review Comment and Resolution Form (RCR)}
```

A. Accept comment - correct, add to, or clarify plans

```
D. Dismiss comment
C. Clarify or discuss and resolve prior to next design phase
R. Resolve comment in next design phase

PI. Preference comment to incorporate
PD. Preference comment, not incorporated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Submittal Stage: Preliminary} & \multicolumn{2}{|l|}{Review Type: Milestone Review} & \multicolumn{2}{|l|}{Package Description: Traffic Analysis} & \multicolumn{2}{|l|}{Package \({ }^{\dagger}\)} \\
\hline \multicolumn{3}{|l|}{Due Date: 11/14/14} & \multicolumn{2}{|l|}{Position/Agency: Chelan County} & \multicolumn{2}{|l|}{Reviewer:} & \multicolumn{2}{|l|}{Email:} \\
\hline ltem No. & *Dwg. No. Page No. & Reviewer Last Name & Comments & Initial Code \({ }^{\dagger}\) & \begin{tabular}{l}
Resp. \\
Person
\end{tabular} & Response/Transfer Discipline & Final Disposition Code Date & QC \\
\hline 19 & Cottage Ave / ALT & City of Cashmere & Consider realigning roadway to allow free flowing traffic on Cottage Ave (east/north - south/west traffic) with a "T" intersection for Titchenal Way (stopping only Titchenal Way traffic). & A & RH & Traffic analysis shows that stop control on Titchenal would result in LOS F, and supports roundabout or signalizing intersection. & & \\
\hline 20 & Cottage Ave / ALT & City of Cashmere & Consider more pronounced deceleration offsets for westbound US2 traffic. & A & RH & Roundabout would be refined in final design. Turning templates and speed curves will be supplied. & & \\
\hline 21 & Cottage Ave / ALT & City of Cashmere & Consider two incoming lanes on both north and south side of roundabout. See MUTCD Figure 3C-8. & A & RH & Would be addressed in final design. & & \\
\hline 22 & Cottage Ave / ALT & City of Cashmere & For single lanes on the side street, consider MUTCD Figure 3C-4. & A & RH & Would be addressed in final design. & & \\
\hline 23 & Cottage Ave / ALT & City of Cashmere & Consider re-use of existing acceleration lane for Cottage Avenue approach as a shoe fly at roundabout. & A & RH & Analysis shows that roundabout would function adequately without the addition of right turn lanes. & & \\
\hline 24 & Cottage Ave / ALT & City of Cashmere & Not sure what the two-way left turn lanes are serving on US2, Cottage, and Titchenal Way. Titchenal could either have two westbound lanes or eliminate two-way left turn lane. & A & RH & Removed two-way left turn lanes on US2, Included on Cottage and Titchenal to provide access to local businesses and maintain through traffic. & & \\
\hline 25 & Cottage Ave / ALT & City of Cashmere & Roundabout inscribed circle seems small for a double lane roundabout that needs to accommodate a high volume of freight traffic. Lanes seem small for freight traffic. Should it be more of an oval-about to reduce deflection for US2 traffic? Turning templates need to be analyzed to ensure the impact footprint isn't sufficiently more than what is shown. & A & RH & Roundabout would be refined in final design. Turning templates and speed curves will be supplied. & & \\
\hline 26 & Cottage Ave / ALT & City of Cashmere & How will this intersection accommodate pedestrian and bike traffic? & A & RH & Crosswalks added. Bikes shall use widened sidewalks and crosswalks to cross US 2. & & \\
\hline 27 & Cottage Ave / ALT & City of Cashmere & Could Titchenal Way extend west to E. Cashmere Rd, intersecting at a " \(T\) " intersection on Cottage? This would allow the roundabout to set closer to the existing intersection. & A & RH & Would be addressed in final design. & & \\
\hline 28 & Cottage Ave & City of Cashmere & Cottage Ave intersection option has similar comments as the Cottage Ave Intersection - Alt with additional impacts to local businesses. & A & RH & Access would be coordinated and provided for local businesses. & & \\
\hline
\end{tabular}

\section*{Cashmere Area Transportation Study}

\section*{Review Comment and Resolution Form (RCR)}
```

Accept comment - correct, add to, or clarify plans

```
D. Dismiss comment
C. Clarify or discuss and resolve prior to next design phase
R. Resolve comment in next design phase

PI. Preference comment to incorporate
PD. Preference comment, not incorporated


\section*{Cashmere Area Transportation Study}

\section*{Review Comment and Resolution Form (RCR)}

\section*{A. Accept comment - correct, add to, or clarify plans}
D. Dismiss comment
C. Clarify or discuss and resolve prior to next design phase
R. Resolve comment in next design phas

PI. Preference comment to incorporate
PD. Preference comment, not incorporated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Submittal Stage: Preliminary} & \multicolumn{2}{|l|}{Review Type: Milestone Review} & \multicolumn{2}{|l|}{Package Description: Traffic Analysis} & \multicolumn{2}{|l|}{Package \({ }^{\dagger}\)} \\
\hline \multicolumn{3}{|l|}{Due Date: 11/14/14} & \multicolumn{2}{|l|}{Position/Agency: Chelan County} & \multicolumn{2}{|l|}{Reviewer:} & \multicolumn{2}{|l|}{Email:} \\
\hline \[
\begin{aligned}
& \text { Item } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & *Dwg. No. Page No. & Reviewer Last Name & Comments & \begin{tabular}{l}
Initial \\
Code \({ }^{\dagger}\)
\end{tabular} & \begin{tabular}{l}
Resp. \\
Person
\end{tabular} & Response/Transfer Discipline & Final Disposition Code Date & QC \\
\hline 34 & General & City of Cashmere & Goodwin Br is currently truck restrictive, what percentages of trucks are projected to use the new Goodwin Br for alternatives 3,4 , and 5 ? & A & YZ & Alternative 3 has 10\% trucks for SB and 11\% trucks for NB on Goodwin bridge. Alternative 4 and 5 both have \(8 \%\) trucks for SB and \(10 \%\) trucks for NB on the bridge. & & \\
\hline 35 & General & City of Cashmere & What are the current and projected truck percentages on each of the "main freight routes" identified in Figure 1? I am not sure all of the routes shown are necessarily set up for freight traffic in terms of their pavement structure. & A & YZ & See attached figure for existing truck percentages on main freight routes. The future truck percentages remain the same as existing truck percentages on freight routes except the new bridge, which has higher truck percentage as shown above. & & \\
\hline 36 & General & City of Cashmere & What is the current ADT and peak hour volume on Goodwin Br ? & A & YZ & Current ADT on Goodwin Bridge is 2300. Existing peak hour volume is shown on the attached Figure 1. & & \\
\hline 37 & General & City of Cashmere & The final discussion paragraph talks about minimum LOS standards. It appears that a new bridge doesn't change or improve the substandard level of service for several of the intersections. The table seems to indicate that the improvements do little to improve the LOS at any of the & A & YZ & That is correct. A new bridge won't improve the traffic operation on the freight route, given the trucks are considered less than \(10 \%\) of the overall traffic. However, the proposed improvements of the intersection will be followed on the recommendation part of the technical memo. & & \\
\hline
\end{tabular}
* Indicate Drawing No. or Page No. or use " \(G\) " for General Comment. \(\quad \dagger\) To be filled out by design lead or segment lead prior to resolution meeting
\(\ddagger\) To be determined at Review Meeting or in subsequent meeting/discussion

 representation of the alternatives considered.

Appendix 4: Structures Concept Report

\section*{EXECUTIVE SUMMARY}

This report is based on the findings and conclusions from Lochner's initial alternative alignment investigations for the replacement of the existing Goodwin Road Bridge.
Lochner's preceding US 2/97 Cashmere Area Transportation Study has produced a detailed report that identified, evaluated, and recommended alternatives to the highcost safety and traffic improvements recommended in the 2002 WSDOT US \(2 / 97\) Corridor Safety Study. The memorandum described the current truck routes between US 2 and the industrial areas in the Cashmere Urban Growth Area (UGA), and proposed alignment alternatives and summarized the traffic operation analysis at critical intersections for the base conditions and the build alternatives.

Each of the proposed alignments will require crossing over the existing Burlington Northern Santa Fe (BNSF) Railway, over the Wenatchee River with bridge structures, and intersecting at-grade with US 2/97. The proposed alignments consist of an alignment replacing the existing bridge near the existing Goodwin Road Bridge, one alignment west of Goodwin Road which will be called Orchard Drive, and another
alignment east of Goodwin Road which will be called the Evergreen Drive.

\section*{Bridge Aesthetics}

Aesthetically, each of the proposed bridge structures along the proposed alignments will have similar visual attributes to standard WSDOT utilitarian type bridge structures. The primary visual presence for each proposed alignment will be from the railroad corridor and from the Wenatchee River. Each proposed alternative is assumed to have similar aesthetics. Costs associated beyond basic aesthetics have not been included in this report.

\section*{Recommended Goodwin Road Bridge Replacement}

Alternative 2 Option 1 has been recommended for the replacement for the existing Goodwin Road Bridge.
This alternative would replace the Goodwin Road Bridge with a new structure, just east of the existing bridge. The new bridge would intersect with US \(2 / 97\) at the existing intersection location. The grade of US 2 would be raised in order to maintain a 5 percent maximum grade along the alignment. Retaining walls would be required along the south side of US 2 east and west of the intersection as well as fill
embankment walls for the southern approach to the new bridge.
The new replacement bridge will consist of a \(355.05-\) foot-long, three-span structure with a 2 -foot, 2-inch voided slab for span 1 over the BNSF Railroad and 7 lines of WF83G girders spaced at 7 feet for span 2. Span 3 of the bridge is along a horizontal curve and would likely require flaring of the girders to meet the bridge curvature and intersection requirements for the improvements at US 2/97. The bridge deck is proposed to be cast-in-place concrete with two 12 -foot lanes, two 5 -foot shoulders, and a 10 -foot shared path on the east side. Bridge rails will consist of a 2foot, 8-inch cast-in-place concrete bridge rail with a 1 -foot, 10 -inch BP rail on the east side, and two 2 -foot, 10 -inch-high single slope cast-in-place concrete bridge rails between the traveled way with a 1-foot, 10inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts. The cost of this option including the cost of the bridge and approach slabs at each end is \(\$ 5.6\) million plus the cost to remove the existing bridge of \(\$ 1.2\) million resulting in a total cost of \(\$ 6.8\) million in 2014 dollars.

\section*{INTRODUCTION}

\section*{General}

The following Structures Concept Report is primarily based on findings and conclusions from Lochner's US 2/97 Cashmere Area Transportation Study, which produced a detailed report that identified, evaluated, and recommended alternatives to the highcost safety and traffic improvements recommended in the 2002 WSDOT US 2/97 Corridor Safety Study. The memorandum described the current truck routes between US 2 and the industrial areas in the Cashmere Urban Growth Area (UGA). This report carries forward three alignment alternatives to accommodate the proposed traffic operation analysis at critical intersections for the base conditions and the build alternatives.

The need for the project is based on growth of transportation demands for area commerce. The County, with many other stakeholders, has invested significant time and resources to realize Cashmere's vision for developing the local transportation infrastructure to help accommodate their long-term growth plan. The project is being progressed in cooperation with Chelan County, the City of Cashmere, Washington State Department of Transportation

Figure 1 - Vicinity Map of Project (courtesy of Google Maps)


\section*{(WSDOT), and Wenatchee Valley Transportation Council (WVTC).}

The vicinity map for the proposed project is depicted in Figure 1 with the proposed alignments that are near the location of the existing bridge, west of the existing bridge, and east of the existing bridge as depicted.

\section*{Project Study Area}

The project limits are in the vicinity of the intersection US 2/97 between the Hay

Canyon intersection vicinity east to the US 2/97 location proposed in WSDOT's study for the "East Cashmere Diamond Interchange," near the intersection of US \(2 / 97\) with Red Apple Road and Old Monitor Road. The study also includes areas within the Cashmere urban growth boundary and unincorporated rural areas to the east or west of the Cashmere UGA.

\section*{Current Freight Routes and Critical Intersections}

Lochner's US 2/97 Cashmere Area Transportation Study identified major freight routes and critical intersections by conducting interviews with the major freight users and stakeholders.

The three existing intersections along US 2/97, Goodwin Road, Cotlets Way and Aplets Way currently operate as an integrated system. The Traffic Level of Service analysis was evaluated at the following eight critical intersections:
- US 2 / Hay Canyon Road
- Sunset Highway / Webster Way
- Sunset Highway / Goodwin Road
- Sunset Highway / Evergreen Drive
- US 2 / Aplets Way
- South Cottage Avenue / Division Street
- US 2 / Cotlets Way
- Cottage Avenue / Tichenal Road

Connection to Existing Highway Network
Each of the proposed alignments and associated bridges will provide a connection to US 2/97. Current evaluations consider intersections at grade.

\section*{Necessary Structures}

Based on the findings and conclusions from Lochner's US 2/97 Cashmere Area Transportation Study, bridge structures will be required to cross over the existing BNSF Railway and the Wenatchee River. It is anticipated that adjacent to each of the structure's abutments will be wing walls and structural earth walls.

\section*{Design Reports and Supplements}

The following are design reports and supplements:
- US 2/97 Cashmere Area Transportation Study

\section*{Environmental Studies and Documentation}

The need for environmental studies and documentation will be required and are planned to follow the current studies.

\section*{Architectural Visual Assessment or Corridor Theme Reports}

There have been no Architectural Visual Assessment or Corridor Theme Reports prepared for this project.

\section*{Hydraulic Reports}

There are no hydraulic reports or analysis that will apply to this project.

\section*{Geotechnical Reports}

There are no geotechnical reports or analysis that will apply to this project.

\section*{PROJECT DESCRIPTION}

\section*{General Conditions and Topography}

The existing topography in the vicinity of the project will primarily remain unchanged after construction with the exception for areas of removing the existing bridge and adding the new bridge. Depending on the approach grades and widening required for the proposed structures, approach walls will be required to accommodate the new channelization.

\section*{Goodwin Road Bridge}

The current Goodwin Road Bridge has been recently funded for replacement by the Local Agency Bridge Program managed by WSDOT, also known as BRAC. This report is to evaluate options for replacement. Each option is to accommodate the proposed alignment and provide the least cost for the most benefit.

\section*{DESIGN CRITERIA}

All materials and workmanship will be in accordance with the requirements of the Washington State Department of

Transportation "Standard Specifications for Roads, Bridges and Municipal Construction," English units, dated 2014 and amendments.

The structures are to be designed in accordance with the WSDOT Bridge Design Manual (LRFD) and the "AASHTO LRFD Bridge Design Specifications," Customary U.S. units, 2012. All prestressed concrete elements are to be designed for service load and checked for load and resistance factor design. All other elements are to be designed per load and resistance factor design method. Seismic design is to be in accordance with the AASHTO Guide Specifications for LRFD Seismic Bridge Design, Second Edition 2011, with 2014 interim revisions.
Concrete in the bridge deck is to be Class 4000D. Concrete in the drilled shafts is to be Class 4000P. Concrete in the approach slabs is to be Class 4000A. All other cast-in-place concrete is to be Class 4000 unless otherwise noted. Any other concrete in sidewalks, curbs, gutters, medians, and slope protection is to be Class 3000 .

Reinforcing bars are to conform to ASTM A706 Grade 60, unless otherwise noted.

Steel for plate girders will be AASHTO M 270 grades 50 or 50 W .

For the BNSF Railway clearances under the bridge structure, the BNSF and Union Pacific Railroad Guidelines for Railroad Grade Separation Projects dated January 2007 have been considered for the initial design clearance criteria. With the site constraints and steep slopes on the south side of the rail tracks combined with the proximity of the Wenatchee River on the north side, it is likely not possible to meet the 25 -foot clearance desired by the railroad per section 5.2.2 and that requesting special review and approval as allowed by BNSF per section 5.2 .2 will be granted. Therefore, the structure concept layouts have considered a 20 -foot distance between the centerline of the existing track and the centerline of a possible future track. Setbacks to the proposed bridge structure are 18 feet, measured from the centerline of the track to the face of the proposed structures.

\section*{STRUCTURAL STUDIES}

\section*{Bridge Aesthetics}

Aesthetically, each of the proposed bridge structures for this study will have standard visual attributes used for WSDOT bridge structures. The visual presence of the bridge structures will be primarily seen from the BNSF Railroad and from the

Wenatchee River. Some visual presence will be from the US 2/97 corridor. Costs associated beyond basic aesthetics have not been included in this report.

\section*{Cost Estimates}

The unit costs are based on WSDOT Bridge Design Manual, July 2011 dollars. It has been assumed that the Inflation Index is the adjustment of costs from 2011 dollars to 2014 dollars. The ultimate construction costs may change depending on when the final design occurs, what foundation system is required, market conditions and design requirements related to the final Bridge Type selected. Any and all project changes may impact the final design and construction cost for the structures. The Design and Construction Management costs at this stage are to be based on a percentage of the construction cost. This project is not within WSDOT right-of- way, except for the intersection with US 2/97, and it will be subject to state and local sales tax as required by DOR Rules 171 and 172.

\section*{Geometric Constraints}

Design Speed
The design speed for the structures within the corridor will be designed for a design speed of 35 mph and a posted speed limit of 25 mph .

\section*{Profile Grade}

The profile grades for the evaluated bridges have a maximum of 5 percent.

\section*{Project Staging and Stage Construction Requirements}

\section*{Total Duration of Construction}

The necessary detour work to replace the existing bridge will only be required for the Goodwin Road alignment option. The extent of required utility work in the vicinity of the proposed alignments is not known at the time of this study. However, the total duration of construction should fit within the boundaries for the critical path construction activities.

\section*{Construction Delays}

Two potential causes of significant delay during construction are (1) the total amount of detour work required; and, (2) the relocation of utilities in the vicinity of the bridge abutments. The proposed alignments require varying sizes of structures, and retaining walls will be required adjacent to some of the bridge wing walls due to the grade requirements needed. The amount of retaining walls and fill slopes for each of the alignment alternatives have not been fully developed at the time of this report.

\section*{Use of Standard Construction Technologies}

All else being equal, a project that uses standard construction technologies is less risky than one that requires specialized construction technologies and specialty subcontractors. The proposed alignment will consider the use of standard construction technologies recommended by WSDOT.

\section*{Foundations}

The required bridge foundations have not been determined, yet it is likely that the required foundation types will be either spread footings or drilled shafts.

\section*{Hydraulics}

There are no hydraulic reports or analysis developed for this report. Future coordination will be required to determine if a hydraulics report will be required for the removal of the existing pier in the river and the replacement with a new pier within the river. Currently, there is one new pier proposed within the 100-year flood zone of the river for this project.

\section*{Feasibility of Construction}

It appears that the construction of the bridge structures is completely feasible based on the current alignment alternative. Currently, the proposed structures are near the spanning capacities, and increasing the length between the abutments may result in new structure types to be considered.

\section*{Structural Constraints}

There are currently no structural constraints foreseen for the proposed structure types.

\section*{Maintenance}

The proposed bridges are to use standard WSDOT prestressed concrete or steel plate girders and standard constructed cast-inplace concrete abutments. These proposed structures are within the guidelines specified in the WSDOT Bridge Design Manual and likely supported by the WSDOT LAG manual requirements. Therefore, the perceived maintenance should likely be minimal. However, in order to achieve efficient spanning structures, the geometry has required some tall abutment walls; hence, it is desired to have abutment walls with minimal height. Therefore, the proposed abutment walls may be a subject of graffiti and require additional maintenance.

\section*{PROPOSED STRUCTURES}

Three separate alignment alternatives were evaluated, with a total of four bridges studied for the replacement of the existing Goodwin Road Bridge. For each structure, the length of the wing wall has been limited to 15 feet with retaining walls required adjacent to the wing walls.
Each of the proposed alignments will require crossing over the existing BNSF railway, over the Wenatchee River with bridge structures, and intersecting at-grade with US \(2 / 97\). The proposed alignments consist of an alignment replacing the existing bridge near the existing Goodwin Road Bridge, one alignment west of Goodwin Road which will be called Orchard Drive, and one alignment east of Goodwin Road which will be called Evergreen Drive.
For each of the bridge structures evaluated, maximum span lengths, girder type and spacing were developing following the WSDOT Bridge Design Manual.

\section*{Removal of the Existing Goodwin Road Bridge}

The existing Goodwin Road Bridge consists of five spans of reinforced concrete girder bridge, plus a two-span steel truss bridge structure over the Wenatchee River. The location of the existing bridge is depicted in

Figure 1. A total of 10,185 square feet of bridge deck area is forecasted for removal at an estimated cost of \(\$ 1.2\) million. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A.
Full removal of the bridge with no replacement will be considered Alternative 1 - No Build, Bridge Demolished.

\section*{Alignment Alternative 2 - Bridge Replacement near Goodwin Road}

The alignment for the proposed Alternative 2 includes utilizing rebuild of the existing Goodwin Road Bridge and realignment to intersect with US \(2 / 97\) at grade at the existing intersection location. The location of the proposed alignment is depicted in Figure 2, and would replace the Goodwin Road Bridge with a new structure, just east of the existing bridge. This alignment option will require regrading the approach to the new bridge on the south and raising the US 2/97 intersection by 14 feet to maintain a 5 percent maximum grade along the alignment. Truck access will be allowed on the rebuilt bridge. The approach to the layout of the proposed bridge has included reducing the total bridge length required. Retaining walls would be required along the south side of US 2 east and west of the intersection as well as fill embankment
walls for the southern approach to the new bridge.

\section*{Alternative 2 Option 1 - Goodwin Road}

This proposed option considers a new replacement bridge that will consist of a \(355.05-\) foot long, 3 -span bridge consisting of 66.83-foot - 175.00-foot - 113.512-foot spans. The alignment of the new bridge over the Wenatchee River, the Goodwin Line, is along a bearing of \(N 7^{\circ} 33^{\prime} 20^{\prime \prime} \mathrm{W}\), and Piers 1, 2, 3 and 4 are skewed to the alignment at \(112^{\circ} 21^{\prime} 31^{\prime \prime}, 111^{\circ} 18^{\prime} 10^{\prime \prime}\), \(102^{\circ} 57^{\prime} 40^{\prime \prime}\) and \(92^{\circ} 59^{\prime} 06^{\prime \prime}\) respectively. The three-span structure will have a 2 -foot, 2inch voided slab spaced at 4 feet for span 1 over the BNSF Railroad and seven lines of WF83G girders spaced at 7 feet for span 2. Span 3 of the bridge is along a horizontal curve and would likely require flaring of the girders to meet the bridge curvature and intersection requirements for the improvements at US 2/97.

The bridge deck is proposed to be cast-inplace concrete with two 12-foot lanes, two 5 -foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of a 2-foot, 8-inch cast-in-place concrete bridge rail with a 1 -foot, 10 -inch BP rail on the east side, and two 2 -foot, 10 -inch-high single slope cast-in-place concrete bridge rails between the traveled way with a 1-foot,

10 -inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts.

This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely require a temporary work bridge access to
construction Pier 3 in the river channel.
The proposed cost for the replacement bridge along the Goodwin Road, including bridge approach slabs would be \(\$ 5.6\) million. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is not included.

This is recommended as the preferred

Figure 2 - Proposed Alignment Alternative 2 (courtesy of Google Maps)

option based on the least construction cost for the bridge. A concept layout plan, elevation and typical sections are depicted on Sheets BG1-1 and BR1-2 in Appendix 4.B.

\section*{Alternative 2 Option 2 - Goodwin Road}

This proposed option considers a new replacement bridge that will consist of a 335.05 -foot long, three-span bridge consisting of 66.83 -foot - 175.00 -foot 113.512 -foot spans. The alignment of the new bridge over the Wenatchee River, the Goodwin Road alignment, is along a bearing of \(\mathrm{N} 7^{\circ} 33^{\prime} 20^{\prime \prime} \mathrm{W}\), and Piers 1, 2, 3 and 4 are skewed to the alignment at \(112^{\circ} 21^{\prime} 21^{\prime \prime}, 111^{\circ} 18^{\prime} 10^{\prime \prime}, 102^{\circ} 57^{\prime} 40^{\prime \prime}\) and \(92^{\circ} 59^{\prime} 06^{\prime \prime}\) respectively. The three-span structure will have a 2 -foot, 2 -inch voided slab spaced at 4 feet for span 1 over the BNSF Railroad and six lines of 7 -foot 6-inch-deep steel plate girders spaced at 8.25 feet for span 2. Span 3 of the bridge is along a horizontal curve and would likely require flaring of the girders to meet the bridge curvature and intersection requirements for the improvements at US 2/97.
The bridge deck is proposed to be cast-inplace concrete with two 12 -foot lanes, two 5 -foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of
a 2-foot, 8-inch cast-in-place concrete bridge rail with a 1 -foot, 10 - inch BP rail on the east side, and two 2-foot, 10-inch-high, single-slope, cast-in-place concrete bridge rails between the traveled way with a 1-foot, 10 -inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts.

This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely need a temporary work bridge access to construction Pier 3 in the river channel.

The proposed cost for Option 2, including shallow depth steel girders for span 1 and bridge approach slabs would be \(\$ 7.1\) million for the bridge. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is included in the Roadway Cost Estimate in Appendix 8.
Our recommending the preferred option is based on the least construction cost. Therefore, the option discussed herein

Figure 3 - Proposed Alignment Alternative 3 (courtesy of Google Maps)

does not represent the recommended option.

\section*{Alignment Alternative 3 - Bridge} Replacement at Orchard Drive
The alignment for the proposed Alternative 3 includes a new roadway alignment that begins in the vicinity of the junction of Turkey Shoot Road / Stines Hill Road and travels northeasterly for approximately 200 feet, then turns northwesterly for 300 feet, then turns northerly for 600 feet and then bends toward the river. After approximately 300 feet, a new bridge crosses the railroad
tracks and the river, intersecting US 2 at a new signalized intersection. The location of the proposed alignment is depicted in Figure 3. This alignment option will require regrading the approach to the new bridge on the south and meeting the US 2/97 intersection at grade. Truck access will be allowed on the rebuilt bridge. The proposed alignment would accommodate a threespan bridge. The alignment of the new bridge over the Wenatchee River, the Orchard Line is along a bearing of N \(30^{\circ} 19^{\prime} 46^{\prime \prime} \mathrm{E}\). The alignment of Piers 1 and 2 would be parallel to the railroad alignment
and Piers 3 and 4 would be normal to the alignment. The approach to the layout of the proposed bridge has included reducing the total bridge length required.

\section*{Alternative 3 Option 1 - Orchard Drive}

This option considers a new replacement bridge that will consist of a 410-foot long, three-span structure consisting of 116.14foot - 175-foot - 114-foot spans with seven lines of WF83G girders spaced at 7 feet.
The bridge deck is proposed to be cast-inplace concrete with two 12-foot lanes, two 5 -foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of a 2-foot, 8 -inch, cast-in-place concrete bridge rail with a 1 -foot, 10 -inch BP rail on the east side, and two 2 -foot, 10 - inch-high single slope cast-in-place concrete bridge rails between the traveled way with a 1-foot, 10 inch BP rails. The abutments and piers would likely be constructed on spread footings or drilled shafts.

This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely need a
temporary work bridge access to construction Pier 2 in the river channel.
The proposed cost of the replacement bridge along the Orchard Drive alignment, including bridge approach slabs would be \(\$ 6.6\) million. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is not included.
Our recommending the preferred option is based on the least construction cost. Therefore, the option discussed herein does not represent the recommended option.
However, a concept layout plan is depicted on Sheet BR2-1 in Appendix 4.B.

\section*{Alternative 3 Option 2 - Orchard Drive}

This option considers a new replacement bridge that will consist of a 410 -foot-long, three-span structure consisting of 116.14foot - 175-foot - 114-foot spans with six lines of 7 -foot, 6-inch-deep steel plate girders spaced at 8.25 feet.
The bridge deck is proposed to be cast-inplace concrete with two 12-foot lanes, two 5 -foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of a 2-foot, 8-inch cast-in-place concrete
bridge rail with a 1 foot, 10 inch BP rail on the east side, and two 2-foot, 10-inch-high, single-slope cast-in-place concrete bridge rails between the traveled way with a 1-foot,10-inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts.

This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely need a temporary work bridge access to construction Pier 2 in the river channel.

The proposed cost for the replacement bridge along the Orchard Line, including bridge approach slabs, would be \(\$ 8.1\) million. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is not included.

Our recommending the preferred option is based on the least construction cost. Therefore, the option discussed herein does not represent the recommended option.

However, a concept layout plan is depicted on Sheet BR2-1 in Appendix 4.B.

\section*{Alignment Alternative 4 - Bridge Replacement at Evergreen Drive}

The alignment for the proposed Alternative 4 includes a new roadway alignment that begins as an extension of Evergreen Drive from Sunset Highway and continues northerly for approximately 400 feet, and then becomes grade-separated on a new bridge structure crossing the railroad tracks, which turns slightly west. The alignment
then crosses the Wenatchee River on another bridge structure and then intersects with US 2/97 at a new signalized intersection. The location of the proposed alignment is depicted in Figure 4. This alignment option will require regrading the approach to the new bridge on the south and meeting the US \(2 / 97\) intersection atgrade. Truck access will be allowed on the rebuilt bridge. The proposed alignment would accommodate a two-span bridge over the BNSF Railroad and then a threespan bridge over the Wenatchee River. The

Figure 4 - Proposed Alignment Option 3 (courtesy of Google Maps)


The Wenatchee River crossing bridge option considers a new replacement bridge that will consist of a 314.07-foot-long, twospan structure consisting of 154.70 -foot -154.70-foot spans with seven lines of WF66G girders spaced at 7 feet.
The bridge deck is proposed to be cast-inplace concrete with two 12-foot lanes, two 5 -foot shoulders and a 10 -foot shared path on the east side. Bridge rails will consist of a 2-foot, 8-inch cast-in-place concrete bridge rail with a 1 -foot, 10 -inch BP rail on the east side, and two 2 -foot, 10 -inch-high, single-slope cast-in-place concrete bridge rails between the traveled way with a 1-foot, 10 -inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts.
This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely need a temporary work bridge access to construction Pier 2 B in the river channel.
The proposed cost for the replacement bridge along the Evergreen Drive alignment, including bridge approach slabs would be \(\$ 3.0\) million for the BNSF
overcrossing and \(\$ 5.1\) million for the Wenatchee River overcrossing, resulting in a total cost for bridges to be \(\$ 8.1\) million The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is not included.
Our recommending the preferred option is based on the least construction cost. Therefore, the option discussed herein does not represent the recommended option.
However, a concept layout plan is depicted on Sheet BR3-1 in Appendix 4.B.

\section*{Alternative 4 Option 2 - Evergreen Drive}

This two- bridge option includes a two-span bridge over the BNSF Railroad to meet the alignment and clearance needs, and a twospan bridge over the Wenatchee River.
The BNSF Railroad crossing bridge option considers a new replacement bridge that will consist of a 202.87-foot-long, two-span structure consisting 108.50-foot -87.60foot spans with of seven lines of 3 -foot, 0 -inch-deep steel plate girders spaced at 7 feet on center for spans 1 and 2.
The Wenatchee River crossing bridge option considers a new replacement bridge
that will consist of a 314.07 -foot-long, twospan structure consisting of 154.70 -foot 154.70 foot spans with six lines of 6 -foot, 3 inch-deep steel plate girders spaced at 8.25 feet.
The bridge deck is proposed to be cast-inplace concrete with two 12 -foot lanes, two 5 -foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of a 2-foot, 8-inch, cast-in-place concrete bridge rail with a 1 -foot, 10 -inch BP rail on the east side, and two 2 -foot, 10-inch-high, single-slope, cast-in-place concrete bridge rails between the traveled way with a 1-foot, 10 -inch BP rail. The abutments and piers would likely be constructed on spread footings or drilled shafts.

This option would require the construction of the temporary work bridges. Considering construction of the substructure elements occurs during the low flow months and within the window allowed by permits, this will minimize the need for temporary work bridges. This option would likely need a temporary work bridge access to construction Pier 2B in the river channel.
The proposed cost for the replacement bridge along the Evergreen Drive alignment, including bridge approach slabs would be \(\$ 3.7\) million for the BNSF overcrossing with steel girders and \(\$ 6.3\)
million for the Wenatchee River overcrossing, resulting in a total cost for bridges to be \(\$ 10.0\) million. The bases for costs and assumptions are summarized in Table 1 in Appendix 4.A. The cost for construction of the mechanically stabilized earth walls adjacent to the wing walls at each abutment is not included.
Our recommending the preferred option is based on the least construction cost. Therefore, the option discussed herein does not represent the recommended option.
However, a concept layout plan is depicted
on Sheet BR3-1 in Appendix 4.B.

\section*{SUMMARY AND CONCLUSIONS}

In summary, the findings in this Structures Concept Report are as follows:
- The alignment alternatives will require either two separate bridges or one continuous bridge, and the total length of bridges required for Alignment Alternative 2 will be 355.05 -feet; Alignment Alternative 3 will be 410.00feet; and Alignment Alternative 4 will be 516.94-feet.
- Based on the final profile defined for the alignment, the need for additional retaining walls and fill slopes will be required, and these have not been considered for this report.
- The recommended Alignment Alternative 1 Option 1 - Bridge Replacement near Goodwin Road will consist of a 355.05-foot-long, threespan structure with a 2 -foot, 2-inch voided slab for span 1 over the BNSF Railroad and 7 lines of WF83G girders spaced at 7.0 -feet for span 2 . Span 3 of the bridge is along a horizontal curve and would likely require flaring of the girders to meet the bridge curvature and intersection requirements for the improvements at US \(2 / 97\). The bridge deck is proposed to be cast-in-place
concrete with two 12-foot lanes, two 5foot shoulders and a 10-foot shared path on the east side. Bridge rails will consist of a 2-foot, 8-inch, cast-in-place, concrete bridge rail with a 1-foot, 10 inch BP rail on the east side, and two 2foot, 10 -inch-high, singleslope, cast-inplace concrete bridge rails between the traveled way with a 1 -foot, 10 -inch BP rails. The abutments and piers would likely be constructed on spread footings or drilled shafts. The cost of this option is \(\$ 5.6\) million, plus the cost to remove the existing bridge of \(\$ 1.2\) million resulting in a total cost of \(\$ 6.8\) million.
- Aesthetically, the bridge structures will have minimal consideration due to utilitarian needs. Costs associated beyond basic aesthetics have not been included in this report
- The alignment of the structures is on grades of four to eight percent.
- Construction duration is not likely to control the critical path for overall construction of the project. The impact associated with the type of retaining walls and earthwork required has not been studied.

\section*{APPENDIX 4.A: Cost Estimate}

\begin{tabular}{|lll|}
\hline & & LIST OF DRAWINGS \\
Sheet & Location & Description \\
\hline BG1-1 & Goodwin Road & Bridge Layout Plan - Option 1 \\
BG1-2 & Goodwin Road & Bridge Typical Sections - Option 1 \\
BG2-1 & Orchard Drive & Bridge Layout Plan - Option 1 \\
BG3-1 & Evergreen Drive & Bridge Layout Plan - Option 1 \\
\hline
\end{tabular}

Appendix 5: AutoTURN Graphics


CASHMERE AREA TRANSPORTATION STUDY TRUCK ROUTE GEOMETRIC REVIEW

LOCHNER
CITY OF CASHMERE


CASHMERE AREA

LOCHNER
CITY OF CASHMERE


CASHMERE AREA

LOCHNER
CITY OF CASHMERE


CASHMERE AREA TRANSPORTATION STUDY INTERSECTION \#9 N DIVISION ST/ COTTAGE AVE

LOCHNER
CITY OF CASHMERE
NOVEMBER 11, 2014


CASHMERE AREA TRANSPORTATION STUDY

LOCHNER
CITY OF CASHMERE


CASHMERE AREA TRANSPORTATION STUDY

BLUE STAR ENTRANCE

LOCHNER
CITY OF CASHMERE


CASHMERE AREA TRANSPORTATION STUDY INTERSECTION EVERGREEN DR/ PIONEER DR

LOCHNER
CITY OF CASHMERE

Appendix 6: Traffic Analysis Reports

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & \(\downarrow\) & 4 & \(\uparrow\) & & \(\dagger\) \\
\hline Lane Group & EBL & EBT & WBL & WBT & WBR & NBT & SBL & SBT \\
\hline Lane Group Flow (vph) & 10 & 557 & 57 & 594 & 31 & 110 & 26 & 42 \\
\hline v/c Ratio & 0.06 & 0.53 & 0.22 & 0.49 & 0.05 & 0.17 & 0.05 & 0.06 \\
\hline Control Delay & 21.2 & 14.4 & 20.7 & 11.7 & 0.2 & 7.6 & 11.2 & 7.9 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 21.2 & 14.4 & 20.7 & 11.7 & 0.2 & 7.6 & 11.2 & 7.9 \\
\hline Queue Length 50th (tt) & 2 & 43 & 10 & 47 & 0 & 6 & 3 & 2 \\
\hline Queue Length 95th (t) & 14 & 106 & 42 & 105 & 0 & 39 & 18 & 20 \\
\hline Internal Link Dist (tt) & & 2069 & & 2822 & & 280 & & 312 \\
\hline Turn Bay Length (tt) & 260 & & 260 & & 290 & & 30 & \\
\hline Base Capacity (vph) & 176 & 1411 & 264 & 1687 & 810 & 659 & 509 & 699 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.06 & 0.39 & 0.22 & 0.35 & 0.04 & 0.17 & 0.05 & 0.06 \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & & & 4 & 4 & \(\dagger\) & 7 & \(\pm\) & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & & \({ }^{7}\) & 中4 & 「' & & * & & \({ }^{1}\) & \(\uparrow\) & \\
\hline Volume (veh/h) & 10 & 535 & 0 & 55 & 570 & 30 & 40 & 15 & 50 & 25 & 20 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1810 & 1810 & 0 & 1810 & 1810 & 1810 & 1900 & 1810 & 1900 & 1810 & 1810 & 1900 \\
\hline Adj Flow Rate, veh/h & 10 & 557 & 0 & 57 & 594 & 31 & 42 & 16 & 52 & 26 & 21 & 21 \\
\hline Adj No. of Lanes & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 5 & 5 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Cap, veh/h & 18 & 980 & 0 & 80 & 1103 & 493 & 292 & 133 & 274 & 609 & 318 & 318 \\
\hline Arrive On Green & 0.01 & 0.28 & 0.00 & 0.05 & 0.32 & 0.32 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 \\
\hline Sat Flow, veh/h & 1723 & 3529 & 0 & 1723 & 3438 & 1538 & 452 & 347 & 716 & 1290 & 831 & 831 \\
\hline Grp Volume(v), veh/h & 10 & 557 & 0 & 57 & 594 & 31 & 110 & 0 & 0 & 26 & 0 & 42 \\
\hline Grp Sat Flow(s), veh/h/ln & 1723 & 1719 & 0 & 1723 & 1719 & 1538 & 1516 & 0 & 0 & 1290 & 0 & 1663 \\
\hline Q Serve(g_s), s & 0.2 & 5.8 & 0.0 & 1.4 & 5.9 & 0.6 & 0.0 & 0.0 & 0.0 & 0.6 & 0.0 & 0.7 \\
\hline Cycle Q Clear(g_c), s & 0.2 & 5.8 & 0.0 & 1.4 & 5.9 & 0.6 & 1.8 & 0.0 & 0.0 & 2.4 & 0.0 & 0.7 \\
\hline Prop In Lane & 1.00 & & 0.00 & 1.00 & & 1.00 & 0.38 & & 0.47 & 1.00 & & 0.50 \\
\hline Lane Grp Cap(c), veh/h & 18 & 980 & 0 & 80 & 1103 & 493 & 698 & 0 & 0 & 609 & 0 & 635 \\
\hline V/C Ratio(X) & 0.55 & 0.57 & 0.00 & 0.71 & 0.54 & 0.06 & 0.16 & 0.00 & 0.00 & 0.04 & 0.00 & 0.07 \\
\hline Avail Cap(c_a), veh/h & 165 & 1314 & 0 & 247 & 1478 & 661 & 698 & 0 & 0 & 609 & 0 & 635 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 20.6 & 12.8 & 0.0 & 19.7 & 11.7 & 9.9 & 8.6 & 0.0 & 0.0 & 9.3 & 0.0 & 8.2 \\
\hline Incr Delay (d2), s/veh & 23.8 & 0.5 & 0.0 & 11.2 & 0.4 & 0.1 & 0.5 & 0.0 & 0.0 & 0.1 & 0.0 & 0.2 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.2 & 2.8 & 0.0 & 0.9 & 2.9 & 0.3 & 0.9 & 0.0 & 0.0 & 0.2 & 0.0 & 0.3 \\
\hline LnGrp Delay(d),s/veh & 44.4 & 13.3 & 0.0 & 30.9 & 12.1 & 9.9 & 9.0 & 0.0 & 0.0 & 9.5 & 0.0 & 8.4 \\
\hline LnGrp LOS & D & B & & C & B & A & A & & & A & & A \\
\hline Approach Vol, veh/h & & 567 & & & 682 & & & 110 & & & 68 & \\
\hline Approach Delay, s/veh & & 13.8 & & & 13.6 & & & 9.0 & & & 8.8 & \\
\hline Approach LOS & & B & & & B & & & A & & & A & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 20.0 & 5.9 & 15.9 & & 20.0 & 4.4 & 17.4 & & & & \\
\hline Change Period (Y+Rc), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 16.0 & 6.0 & 16.0 & & 16.0 & 4.0 & 18.0 & & & & \\
\hline Max Q Clear Time (g_c+l1), s & & 3.8 & 3.4 & 7.8 & & 4.4 & 2.2 & 7.9 & & & & \\
\hline Green Ext Time (p_c), s & & 0.7 & 0.0 & 4.1 & & 0.6 & 0.0 & 4.8 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 13.1 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.2 & 3.3 & 10.3 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 724 & 1494 & - & - & 1481 & - & - & 621 \\
HCM Lane V/C Ratio & 0.068 & 0.001 & - & - & 0.046 & - & - & 0.012 \\
HCM Control Delay (s) & 10.3 & 7.4 & 0 & - & 7.5 & 0 & - & 10.9 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.1 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 321 & 322 & 83 \\
\(\quad\) Stage 1 & 219 & 219 & - \\
\(\quad\) Stage 2 & 102 & 103 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 628 & 592 & 971 \\
\(\quad\) Stage 1 & 779 & 718 & - \\
\(\quad\) Stage 2 & 899 & 806 & - \\
Platoon blocked, \% & 590 & 563 & 971 \\
\hline Mov Cap-1 Maneuver & 590 & 563 & - \\
Mov Cap-2 Maneuver & 778 & 684 & - \\
\hline Stage 1 & 877 & 805 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 10.9 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}

\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 1.9 & 0 & 10.9 \\
HCM LOS & & \(B\)
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1334 & - & - & - & 746 \\
HCM Lane V/C Ratio & 0.025 & - & - & - & 0.179 \\
HCM Control Delay (s) & 7.8 & 0 & - & - & 10.9 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 0.6
\end{tabular}

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.4 & 11.1 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 576 & 873 & - & - & 1367 & - \\
HCM Lane V/C Ratio & 0.152 & 0.086 & - & - & 0.027 & - \\
\hline HCM Control Delay (s) & 12.4 & 9.5 & - & - & 7.7 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.5 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 5 & 723 & 96 & 170 & 670 & 186 & 32 \\
\hline v/c Ratio & 0.04 & 0.74 & 0.17 & 0.57 & 0.43 & 0.33 & 0.06 \\
\hline Control Delay & 24.4 & 22.6 & 1.2 & 28.8 & 10.2 & 9.9 & 12.4 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 24.4 & 22.6 & 1.2 & 28.8 & 10.2 & 9.9 & 12.4 \\
\hline Queue Length 50th (t) & 2 & 111 & 0 & 51 & 57 & 21 & 6 \\
\hline Queue Length 95th ( t ) & 10 & 165 & 6 & \#104 & 123 & 63 & 22 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 137 & 1102 & 613 & 344 & 1791 & 556 & 527 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.04 & 0.66 & 0.16 & 0.49 & 0.37 & 0.33 & 0.06 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & 7 & & 4 &  & \(\dagger\) & 7 & \[
t
\] & \(\ddagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{1}\) & 中4 & 「＇ & \({ }^{7}\) & 中 \(\%\) & & & 4 & & & \＆ & \\
\hline Volume（veh／h） & 5 & 680 & 90 & 160 & 625 & 5 & 80 & 5 & 90 & 15 & 10 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate，veh／h & 5 & 723 & 0 & 170 & 665 & 5 & 85 & 5 & 96 & 16 & 11 & 5 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh，\％ & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap，veh／h & 9 & 980 & 438 & 214 & 1413 & 11 & 297 & 49 & 256 & 328 & 209 & 79 \\
\hline Arrive On Green & 0.01 & 0.29 & 0.00 & 0.13 & 0.41 & 0.41 & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 & 0.34 \\
\hline Sat Flow，veh／h & 1691 & 3374 & 1509 & 1691 & 3432 & 26 & 561 & 142 & 750 & 642 & 613 & 232 \\
\hline Grp Volume（v），veh／h & 5 & 723 & 0 & 170 & 327 & 343 & 186 & 0 & 0 & 32 & 0 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1771 & 1453 & 0 & 0 & 1487 & 0 & 0 \\
\hline Q Serve（g＿s），s & 0.1 & 9.6 & 0.0 & 4.9 & 7.0 & 7.0 & 2.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.1 & 9.6 & 0.0 & 4.9 & 7.0 & 7.0 & 4.5 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.46 & & 0.52 & 0.50 & & 0.16 \\
\hline Lane Grp Cap（c），veh／h & 9 & 980 & 438 & 214 & 695 & 729 & 602 & 0 & 0 & 617 & 0 & 0 \\
\hline V／C Ratio（X） & 0.55 & 0.74 & 0.00 & 0.79 & 0.47 & 0.47 & 0.31 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 136 & 1085 & 485 & 340 & 746 & 783 & 602 & 0 & 0 & 617 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 24.7 & 15.9 & 0.0 & 21.1 & 10.7 & 10.7 & 12.2 & 0.0 & 0.0 & 11.0 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 43.3 & 2.4 & 0.0 & 6.5 & 0.5 & 0.5 & 1.3 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.2 & 4.7 & 0.0 & 2.7 & 3.4 & 3.5 & 2.1 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 68.0 & 18.4 & 0.0 & 27.6 & 11.2 & 11.1 & 13.6 & 0.0 & 0.0 & 11.1 & 0.0 & 0.0 \\
\hline LnGrp LOS & E & B & & C & B & B & B & & & B & & \\
\hline Approach Vol，veh／h & & 728 & & & 840 & & & 186 & & & 32 & \\
\hline Approach Delay，s／veh & & 18.7 & & & 14.5 & & & 13.6 & & & 11.1 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 10.3 & 18.5 & & 21.0 & 4.3 & 24.5 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 10.0 & 16.0 & & 17.0 & 4.0 & 22.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 6.5 & 6.9 & 11.6 & & 2.6 & 2.1 & 9.0 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.9 & 0.1 & 2.8 & & 1.0 & 0.0 & 6.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 16.0 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 13.2 & & & & & & & & \\
\hline Intersection LOS & B & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 230 & 40 & 0 & 205 & 255 & 0 & 55 & 175 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 271 & 47 & 0 & 241 & 300 & 0 & 65 & 206 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lcrr} 
Approach & WB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & NB & 2 & 2 \\
Conflicting Approach Left & 2 & & WB \\
Conflicting Lanes Left & SB & 0 & 1 \\
Conflicting Approach Right & 2 & WB & \\
Conflicting Lanes Right & 15.4 & 1 & 0 \\
HCM Control Delay & C & 12.5 & 12.1 \\
HCM LOS & B & B \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(85 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \% & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(15 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 205 & 255 & 270 & 55 & 175 \\
LT Vol & 205 & 0 & 0 & 0 & 175 \\
Through Vol & 0 & 255 & 40 & 0 & 0 \\
RT Vol & 0 & 0 & 230 & 55 & 0 \\
Lane Flow Rate & 241 & 300 & 318 & 65 & 206 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.403 & 0.442 & 0.524 & 0.122 & 0.36 \\
Departure Headway (Hd) & 6.01 & 5.298 & 5.943 & 6.811 & 6.302 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 598 & 678 & 607 & 526 & 570 \\
Service Time & 3.748 & 3.037 & 3.982 & 4.559 & 4.049 \\
HCM Lane V/C Ratio & 0.403 & 0.442 & 0.524 & 0.124 & 0.361 \\
HCM Control Delay & 12.8 & 12.2 & 15.4 & 10.5 & 12.6 \\
HCM Lane LOS & B & B & C & B & B \\
HCM 95th-tile Q & 1.9 & 2.3 & 3 & 0.4 & 1.6
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 15.5 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 150 & 15 & 0 & 5 & 265 & 0 & 300 & 185 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 167 & 17 & 0 & 6 & 294 & 0 & 333 & 206 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 12.7 & & & 12.4 & & & 18.2 & \\
\hline HCM LOS & & B & & & B & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 270 & 150 & 15 & 485 \\
LT Vol & 265 & 0 & 0 & 300 \\
Through Vol & 0 & 0 & 15 & 185 \\
RT Vol & 5 & 150 & 0 & 0 \\
Lane Flow Rate & 300 & 167 & 17 & 539 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.439 & 0.326 & 0.027 & 0.7 \\
Departure Headway (Hd) & 5.264 & 7.036 & 5.815 & 4.79 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 687 & 513 & 618 & 760 \\
Service Time & 3.283 & 4.751 & 3.53 & 2.79 \\
HCM Lane V/C Ratio & 0.437 & 0.326 & 0.028 & 0.709 \\
HCM Control Delay & 12.4 & 13.1 & 8.7 & 18.2 \\
HCM Lane LOS & B & B & A & C \\
HCM 95th-tile Q & 2.2 & 1.4 & 0.1 & 5.8
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & 3 & \(\checkmark\) & k & \(\rightarrow\) & * & 4 & 4 & \(k\) & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 63 & 354 & 37 & 10 & 16 & 771 & 42 & 344 & 818 & 26 \\
\hline v/c Ratio & 0.14 & 0.23 & 0.08 & 0.02 & 0.14 & 0.85 & 0.08 & 0.82 & 0.43 & 0.03 \\
\hline Control Delay & 17.2 & 0.3 & 16.4 & 0.1 & 29.1 & 31.4 & 0.3 & 39.7 & 9.3 & 0.1 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 17.2 & 0.3 & 16.4 & 0.1 & 29.1 & 31.4 & 0.3 & 39.7 & 9.3 & 0.1 \\
\hline Queue Length 50th (tt) & 17 & 0 & 10 & 0 & 6 & 137 & 0 & 116 & 74 & 0 \\
\hline Queue Length 95th (tt) & 42 & 0 & 29 & 0 & 22 & \#225 & 0 & \#238 & 151 & 0 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length ( t ) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 443 & 1553 & 463 & 567 & 118 & 948 & 543 & 445 & 1895 & 889 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.14 & 0.23 & 0.08 & 0.02 & 0.14 & 0.81 & 0.08 & 0.77 & 0.43 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & \(\rightarrow\) & ＊ & 易 & & & & \(\pm\) & 4 & \(\cdots\) & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & 4 & 「 & & \(\uparrow\) & 7 & \({ }^{7}\) & 44 & 「 & \({ }^{7}\) & 44 & 「 \\
\hline Volume（veh／h） & 40 & 20 & 340 & 20 & 15 & 10 & 15 & 740 & 40 & 330 & 785 & 25 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 42 & 21 & 0 & 21 & 16 & 10 & 16 & 771 & 0 & 344 & 818 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 381 & 170 & 461 & 333 & 227 & 461 & 27 & 921 & 412 & 397 & 1658 & 742 \\
\hline Arrive On Green & 0.30 & 0.30 & 0.00 & 0.30 & 0.30 & 0.30 & 0.02 & 0.27 & 0.00 & 0.23 & 0.48 & 0.00 \\
\hline Sat Flow，veh／h & 929 & 572 & 1553 & 790 & 765 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 63 & 0 & 0 & 37 & 0 & 10 & 16 & 771 & 0 & 344 & 818 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1501 & 0 & 1553 & 1555 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.3 & 0.5 & 12.0 & 0.0 & 10.9 & 9.2 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 1.5 & 0.0 & 0.0 & 0.8 & 0.0 & 0.3 & 0.5 & 12.0 & 0.0 & 10.9 & 9.2 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.57 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 551 & 0 & 461 & 560 & 0 & 461 & 27 & 921 & 412 & 397 & 1658 & 742 \\
\hline V／C Ratio（X） & 0.11 & 0.00 & 0.00 & 0.07 & 0.00 & 0.02 & 0.59 & 0.84 & 0.00 & 0.87 & 0.49 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 551 & 0 & 461 & 560 & 0 & 461 & 122 & 970 & 434 & 456 & 1658 & 742 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 14.7 & 0.0 & 0.0 & 14.4 & 0.0 & 14.2 & 28.0 & 19.9 & 0.0 & 21.3 & 10.2 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.1 & 0.0 & 0.0 & 0.2 & 0.0 & 0.1 & 18.3 & 6.3 & 0.0 & 14.5 & 0.2 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.7 & 0.0 & 0.0 & 0.5 & 0.0 & 0.1 & 0.4 & 6.5 & 0.0 & 6.8 & 4.4 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 14.8 & 0.0 & 0.0 & 14.7 & 0.0 & 14.3 & 46.3 & 26.2 & 0.0 & 35.8 & 10.4 & 0.0 \\
\hline LnGrp LOS & B & & & B & & B & D & C & & D & B & \\
\hline Approach Vol，veh／h & & 63 & & & 47 & & & 787 & & & 1162 & \\
\hline Approach Delay，s／veh & & 14.8 & & & 14.6 & & & 26.6 & & & 17.9 & \\
\hline Approach LOS & & B & & & B & & & C & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 17.1 & 19.2 & & 21.0 & 4.9 & 31.3 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 15.0 & 16.0 & & 17.0 & 4.0 & 27.0 & & & & \\
\hline Max Q Clear Time（g＿c＋l1），s & & 3.5 & 12.9 & 14.0 & & 2.8 & 2.5 & 11.2 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.4 & 0.2 & 1.2 & & 0.4 & 0.0 & 8.5 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 21.1 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lrrr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.4 & 24.8 \\
HCM LOS & & & C
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 418 & - & - & 1156 & - \\
HCM Lane V/C Ratio & 0.579 & - & - & 0.102 & - \\
HCM Control Delay (s) & 24.8 & - & - & 8.5 & 0 \\
HCM Lane LOS & C & - & - & A & A \\
HCM 95th \%tile Q(veh) & 3.6 & - & - & 0.3 & -
\end{tabular}

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & \[
\downarrow
\] & 4 & 4 & & \(\dagger\) \\
\hline Lane Group & EBL & EBT & WBL & WBT & WBR & NBT & SBL & SBT \\
\hline Lane Group Flow (vph) & 10 & 906 & 68 & 927 & 36 & 130 & 31 & 47 \\
\hline v/c Ratio & 0.06 & 0.79 & 0.30 & 0.64 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline Control Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Length 50th (ft) & 3 & 125 & 19 & 83 & 0 & 14 & 6 & 5 \\
\hline Queue Length 95th (ft) & 14 & \#216 & 48 & 178 & 0 & 44 & 21 & 22 \\
\hline Internal Link Dist (ft) & & 2069 & & 2822 & & 280 & & 312 \\
\hline Turn Bay Length (ft) & 260 & & 260 & & 290 & & 30 & \\
\hline Base Capacity (vph) & 156 & 1249 & 234 & 1625 & 784 & 586 & 490 & 626 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.06 & 0.73 & 0.29 & 0.57 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline
\end{tabular}

Intersection Summary
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & \(\checkmark\) & 7 & & 4 & \[
4
\] & \(\dagger\) & \(p\) & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 中4 & & \({ }^{1}\) & 中4 & 「 & & \＆ & & \({ }^{*}\) & \(\uparrow\) & \\
\hline Volume（veh／h） & 10 & 870 & 0 & 65 & 890 & 35 & 50 & 15 & 60 & 30 & 25 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1810 & 1810 & 0 & 1810 & 1810 & 1810 & 1900 & 1810 & 1900 & 1810 & 1810 & 1900 \\
\hline Adj Flow Rate，veh／h & 10 & 906 & 0 & 68 & 927 & 36 & 52 & 16 & 62 & 31 & 26 & 21 \\
\hline Adj No．of Lanes & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 5 & 5 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Cap，veh／h & 18 & 1159 & 0 & 87 & 1297 & 580 & 277 & 108 & 251 & 534 & 325 & 262 \\
\hline Arrive On Green & 0.01 & 0.34 & 0.00 & 0.05 & 0.38 & 0.38 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
\hline Sat Flow，veh／h & 1723 & 3529 & 0 & 1723 & 3438 & 1538 & 478 & 308 & 717 & 1278 & 928 & 749 \\
\hline Grp Volume（v），veh／h & 10 & 906 & 0 & 68 & 927 & 36 & 130 & 0 & 0 & 31 & 0 & 47 \\
\hline Grp Sat Flow（s），veh／h／ln & 1723 & 1719 & 0 & 1723 & 1719 & 1538 & 1503 & 0 & 0 & 1278 & 0 & 1677 \\
\hline Q Serve（g＿s），s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 & 0.9 \\
\hline Cycle Q Clear（g＿c），s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 2.5 & 0.0 & 0.0 & 3.3 & 0.0 & 0.9 \\
\hline Prop In Lane & 1.00 & & 0.00 & 1.00 & & 1.00 & 0.40 & & 0.48 & 1.00 & & 0.45 \\
\hline Lane Grp Cap（c），veh／h & 18 & 1159 & 0 & 87 & 1297 & 580 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline V／C Ratio（X） & 0.56 & 0.78 & 0.00 & 0.78 & 0.71 & 0.06 & 0.20 & 0.00 & 0.00 & 0.06 & 0.00 & 0.08 \\
\hline Avail Cap（c＿a），veh／h & 151 & 1203 & 0 & 226 & 1353 & 605 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 22.5 & 13.6 & 0.0 & 21.5 & 12.1 & 9.1 & 10.5 & 0.0 & 0.0 & 11.7 & 0.0 & 9.9 \\
\hline Incr Delay（d2），s／veh & 24.2 & 3.3 & 0.0 & 13.9 & 1.7 & 0.0 & 0.7 & 0.0 & 0.0 & 0.2 & 0.0 & 0.3 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.2 & 5.6 & 0.0 & 1.2 & 5.2 & 0.3 & 1.3 & 0.0 & 0.0 & 0.3 & 0.0 & 0.4 \\
\hline LnGrp Delay（d），s／veh & 46.7 & 16.9 & 0.0 & 35.3 & 13.9 & 9.1 & 11.2 & 0.0 & 0.0 & 11.9 & 0.0 & 10.2 \\
\hline LnGrp LOS & D & B & & D & B & A & B & & & B & & B \\
\hline Approach Vol，veh／h & & 916 & & & 1031 & & & 130 & & & 78 & \\
\hline Approach Delay，s／veh & & 17.3 & & & 15.1 & & & 11.2 & & & 10.9 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R c\) ），\(s\) & & 20.0 & 6.3 & 19.4 & & 20.0 & 4.5 & 21.3 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 16.0 & 6.0 & 16.0 & & 16.0 & 4.0 & 18.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 4.5 & 3.8 & 12.8 & & 5.3 & 2.3 & 12.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.8 & 0.0 & 2.6 & & 0.8 & 0.0 & 4.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}

\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2 & 0 & 11.7 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1279 & - & - & - & 692 \\
HCM Lane V/C Ratio & 0.03 & - & - & - & 0.225 \\
HCM Control Delay (s) & 7.9 & 0 & - & - & 11.7 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 0.9
\end{tabular}

HCM 2010 TWSC
5: Evergreen Dr \& Sunset Hwy

\begin{tabular}{lrcr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.4 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 513 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.195 & 0.104 & - & - & 0.033 & - \\
HCM Control Delay (s) & 13.7 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 952 & 112 & 202 & 877 & 234 & 32 \\
\hline v/c Ratio & 0.09 & 0.96 & 0.20 & 0.69 & 0.51 & 0.46 & 0.07 \\
\hline Control Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Length 50th (t) & 4 & 160 & 0 & 62 & 82 & 32 & 6 \\
\hline Queue Length 95th ( t ) & 16 & \#274 & 12 & \#141 & 171 & 84 & 22 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 123 & 991 & 569 & 309 & 1725 & 512 & 465 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.96 & 0.20 & 0.65 & 0.51 & 0.46 & 0.07 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & 7 & & 4 &  & \(\dagger\) & 7 & \[
t
\] & \(\ddagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{1}\) & 中4 & 「 & \({ }^{1}\) & 中 \({ }^{\text {P }}\) & & & \＆ & & & \＆ & \\
\hline Volume（veh／h） & 10 & 895 & 105 & 190 & 820 & 5 & 95 & 10 & 115 & 15 & 10 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate，veh／h & 11 & 952 & 0 & 202 & 872 & 5 & 101 & 11 & 122 & 16 & 11 & 5 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh，\％ & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap，veh／h & 19 & 1023 & 458 & 249 & 1511 & 9 & 266 & 57 & 246 & 298 & 189 & 71 \\
\hline Arrive On Green & 0.01 & 0.30 & 0.00 & 0.15 & 0.44 & 0.44 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 \\
\hline Sat Flow，veh／h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 524 & 177 & 763 & 607 & 588 & 221 \\
\hline Grp Volume（v），veh／h & 11 & 952 & 0 & 202 & 428 & 449 & 234 & 0 & 0 & 32 & 0 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1464 & 0 & 0 & 1416 & 0 & 0 \\
\hline Q Serve（g＿s），s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 3.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 6.6 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.43 & & 0.52 & 0.50 & & 0.16 \\
\hline Lane Grp Cap（c），veh／h & 19 & 1023 & 458 & 249 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline V／C Ratio（X） & 0.58 & 0.93 & 0.00 & 0.81 & 0.58 & 0.58 & 0.41 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 128 & 1023 & 458 & 320 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 26.0 & 17.9 & 0.0 & 21.8 & 11.1 & 11.1 & 14.3 & 0.0 & 0.0 & 12.4 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 24.5 & 14.4 & 0.0 & 11.5 & 1.1 & 1.1 & 2.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.3 & 8.7 & 0.0 & 3.6 & 4.9 & 5.1 & 3.1 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 50.5 & 32.3 & 0.0 & 33.2 & 12.2 & 12.2 & 16.5 & 0.0 & 0.0 & 12.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & C & B & B & B & & & B & & \\
\hline Approach Vol，veh／h & & 963 & & & 1079 & & & 234 & & & 32 & \\
\hline Approach Delay，s／veh & & 32.5 & & & 16.1 & & & 16.5 & & & 12.6 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 11.8 & 20.0 & & 21.0 & 4.6 & 27.2 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 10.0 & 16.0 & & 17.0 & 4.0 & 22.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 8.6 & 8.1 & 16.5 & & 2.7 & 2.3 & 12.1 & & & & \\
\hline Green Ext Time（p＿c），s & & 1.0 & 0.1 & 0.0 & & 1.3 & 0.0 & 6.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 22.9 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.9 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 255 & 310 & 0 & 70 & 210 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 300 & 365 & 0 & 82 & 247 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline Approach & & WB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 2 & & & 2 & \\
\hline Conflicting Approach Left & & NB & & & & & & WB & \\
\hline Conflicting Lanes Left & & 2 & & & 0 & & & 1 & \\
\hline Conflicting Approach Right & & SB & & & WB & & & & \\
\hline Conflicting Lanes Right & & 2 & & & 1 & & & 0 & \\
\hline HCM Control Delay & & 20.5 & & & 16.2 & & & 14.4 & \\
\hline HCM LOS & & C & & & C & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 255 & 310 & 315 & 70 & 210 \\
LT Vol & 255 & 0 & 0 & 0 & 210 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 300 & 365 & 371 & 82 & 247 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.534 & 0.577 & 0.651 & 0.167 & 0.465 \\
Departure Headway (Hd) & 6.407 & 5.693 & 6.32 & 7.288 & 6.776 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 561 & 631 & 571 & 490 & 529 \\
Service Time & 4.176 & 3.461 & 4.377 & 5.066 & 4.554 \\
HCM Lane V/C Ratio & 0.535 & 0.578 & 0.65 & 0.167 & 0.467 \\
HCM Control Delay & 16.4 & 16 & 20.5 & 11.5 & 15.4 \\
HCM Lane LOS & C & C & C & B & C \\
HCM 95th-tile Q & 3.1 & 3.7 & 4.7 & 0.6 & 2.4
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 28.3 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 200 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 222 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.9 & & & 16 & & & 39.8 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 200 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 200 & 0 & 0 \\
Lane Flow Rate & 350 & 222 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.561 & 0.464 & 0.048 & 0.918 \\
Departure Headway (Hd) & 5.774 & 7.509 & 6.282 & 5.171 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 623 & 478 & 567 & 696 \\
Service Time & 3.843 & 5.279 & 4.052 & 3.23 \\
HCM Lane V/C Ratio & 0.562 & 0.464 & 0.049 & 0.918 \\
HCM Control Delay & 16 & 16.7 & 9.4 & 39.8 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.5 & 2.4 & 0.2 & 12.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\square\) & & & \(\rightarrow\) & k & \(\Delta\) & 4 & \(k\) & - \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 78 & 464 & 47 & 16 & 21 & 1010 & 47 & 453 & 1068 & 31 \\
\hline v/c Ratio & 0.18 & 0.30 & 0.11 & 0.03 & 0.18 & 1.09 & 0.09 & 1.04 & 0.55 & 0.03 \\
\hline Control Delay & 17.7 & 0.5 & 16.7 & 0.1 & 30.4 & 82.5 & 0.3 & 81.8 & 10.6 & 0.1 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 17.7 & 0.5 & 16.7 & 0.1 & 30.4 & 82.5 & 0.3 & 81.8 & 10.6 & 0.1 \\
\hline Queue Length 50th (tt) & 21 & 0 & 13 & 0 & 7 & -224 & 0 & -184 & 107 & 0 \\
\hline Queue Length 95th (tt) & 50 & 0 & 34 & 0 & 26 & \#332 & 0 & \#339 & 214 & 0 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length (tt) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 423 & 1553 & 446 & 557 & 115 & 925 & 534 & 434 & 1931 & 904 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.18 & 0.30 & 0.11 & 0.03 & 0.18 & 1.09 & 0.09 & 1.04 & 0.55 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{~ Volume exceeds capacity, queue is theoretically infinite.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.}} \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & V & \(\rightarrow\) & T & 倞 & & & \(\checkmark\) & ＊ & 4 & 4 & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \({ }_{4}{ }^{-1}\) & 「＇ & & 4 & 「＇ & \({ }^{7}\) & 44 & 「＇ & \({ }^{7}\) & 中4 & 「 \\
\hline Volume（veh／h） & 50 & 25 & 445 & 25 & 20 & 15 & 20 & 970 & 45 & 435 & 1025 & 30 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 52 & 26 & 0 & 26 & 21 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 359 & 160 & 440 & 312 & 226 & 440 & 34 & 926 & 414 & 435 & 1725 & 772 \\
\hline Arrive On Green & 0.28 & 0.28 & 0.00 & 0.28 & 0.28 & 0.28 & 0.02 & 0.27 & 0.00 & 0.25 & 0.50 & 0.00 \\
\hline Sat Flow，veh／h & 914 & 565 & 1553 & 773 & 797 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 78 & 0 & 0 & 47 & 0 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1479 & 0 & 1553 & 1570 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 1.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.7 & 16.0 & 0.0 & 15.0 & 13.4 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 2.3 & 0.0 & 0.0 & 1.1 & 0.0 & 0.4 & 0.7 & 16.0 & 0.0 & 15.0 & 13.4 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.55 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 519 & 0 & 440 & 538 & 0 & 440 & 34 & 926 & 414 & 435 & 1725 & 772 \\
\hline V／C Ratio（X） & 0.15 & 0.00 & 0.00 & 0.09 & 0.00 & 0.04 & 0.61 & 1.09 & 0.00 & 1.04 & 0.62 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 519 & 0 & 440 & 538 & 0 & 440 & 116 & 926 & 414 & 435 & 1725 & 772 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 16.2 & 0.0 & 0.0 & 15.8 & 0.0 & 15.6 & 29.2 & 22.0 & 0.0 & 22.5 & 11.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.1 & 0.0 & 0.0 & 0.3 & 0.0 & 0.2 & 16.4 & 57.6 & 0.0 & 54.3 & 0.7 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.0 & 0.0 & 0.0 & 0.6 & 0.0 & 0.2 & 0.5 & 15.0 & 0.0 & 13.7 & 6.5 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 16.3 & 0.0 & 0.0 & 16.1 & 0.0 & 15.7 & 45.6 & 79.6 & 0.0 & 76.8 & 11.6 & 0.0 \\
\hline LnGrp LOS & B & & & B & & B & D & F & & F & B & \\
\hline Approach Vol，veh／h & & 78 & & & 63 & & & 1031 & & & 1521 & \\
\hline Approach Delay，s／veh & & 16.3 & & & 16.0 & & & 78.9 & & & 31.1 & \\
\hline Approach LOS & & B & & & B & & & E & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 19.0 & 20.0 & & 21.0 & 5.2 & 33.8 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 15.0 & 16.0 & & 17.0 & 4.0 & 27.0 & & & & \\
\hline Max Q Clear Time（g＿c＋l1），s & & 4.3 & 17.0 & 18.0 & & 3.1 & 2.7 & 15.4 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.5 & 0.0 & 0.0 & & 0.5 & 0.0 & 8.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 48.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & D & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 13.8 & & & & & & \\
\hline Movement & & EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Vol, veh/h & & 335 & 115 & 125 & 360 & 115 & 150 \\
\hline Conflicting Peds, \#/hr & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & & - & None & - & None & - & None \\
\hline Storage Length & & - & - & - & - & 0 & \\
\hline Veh in Median Storage, \# & & 0 & - & - & 0 & 0 & \\
\hline Grade, \% & & 0 & - & - & 0 & 0 & \\
\hline Peak Hour Factor & & 93 & 93 & 93 & 93 & 93 & 93 \\
\hline Heavy Vehicles, \% & & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Mvmt Flow & & 360 & 124 & 34 & 387 & 124 & 161 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 484 & 0 & 1078 & 422 \\
\hline Stage 1 & - & - & - & - & 422 & \\
\hline Stage 2 & - & - & - & - & 656 & \\
\hline Critical Hdwy & - & & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1068 & - & 240 & 627 \\
\hline Stage 1 & - & - & - & - & 657 & \\
\hline Stage 2 & - & & - & - & 513 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & & 1068 & - & 202 & 627 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 202 & \\
\hline Stage 1 & - & - & - & - & 657 & \\
\hline Stage 2 & - & - & - & - & 431 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.3 & 58.3 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 328 & - & - & 1068 & - \\
HCM Lane V/C Ratio & 0.869 & - & - & 0.126 & - \\
HCM Control Delay (s) & 58.3 & - & - & 8.9 & 0 \\
HCM Lane LOS & F & - & - & A & A \\
HCM 95th \%tile Q(veh) & 8 & - & - & 0.4 & -
\end{tabular}

Queues
1: US 2 \& Hay Canyon Rd


\footnotetext{
Intersection Summary
}


Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & \multicolumn{2}{|l|}{Major1} & \multicolumn{2}{|l|}{Major2} & \multicolumn{2}{|l|}{Minor2} \\
\hline Conflicting Flow All & 222 & 0 & & 0 & 375 & 219 \\
\hline Stage 1 & & - & & - & 219 & \\
\hline Stage 2 & & - & - & - & 156 & \\
\hline Critical Hdwy & 4.13 & - & - & - & 6.43 & 6.23 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.43 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.43 & \\
\hline Follow-up Hdwy & 2.227 & - & - & - & 3.527 & 3.327 \\
\hline Pot Cap-1 Maneuver & 1341 & - & - & - & 624 & 818 \\
\hline Stage 1 & - & - & - & - & 815 & \\
\hline Stage 2 & - & - & - & - & 870 & \\
\hline Platoon blocked, \% & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & 1341 & - & - & - & 621 & 818 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 621 & \\
\hline Stage 1 & - & - & - & - & 815 & \\
\hline Stage 2 & - & - & - & - & 866 & \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, S & 0.3 & 0 & 10.2 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1341 & - & - & - & 706 \\
HCM Lane V/C Ratio & 0.004 & - & - & - & 0.016 \\
HCM Control Delay (s) & 7.7 & 0 & - & - & 10.2 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0 & - & - & - & 0
\end{tabular}

HCM 2010 TWSC
5: Evergreen Dr \& Sunset Hwy

\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.2 & 9.9 \\
HCM LOS & & & A
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 511 & 869 & - & - & 1394 & - \\
HCM Lane V/C Ratio & 0.024 & 0.101 & - & - & 0.031 & - \\
HCM Control Delay (s) & 12.2 & 9.6 & - & - & 7.7 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.1 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\geqslant\) & 7 & & 4 & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 883 & 176 & 271 & 798 & 357 & 26 \\
\hline v/c Ratio & 0.10 & 0.84 & 0.30 & 0.77 & 0.42 & 0.82 & 0.06 \\
\hline Control Delay & 28.3 & 28.0 & 4.5 & 39.3 & 8.7 & 34.3 & 14.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 28.3 & 28.0 & 4.5 & 39.3 & 8.7 & 34.3 & 14.8 \\
\hline Queue Length 50th (tt) & 4 & 153 & 0 & 92 & 68 & 94 & 6 \\
\hline Queue Length 95th (tt) & 17 & \#246 & 36 & \#195 & 143 & \#231 & 21 \\
\hline Internal Link Dist (t) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (tt) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 115 & 1097 & 609 & 375 & 1895 & 436 & 453 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.10 & 0.80 & 0.29 & 0.72 & 0.42 & 0.82 & 0.06 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\dagger\) & 7 & & 4 &  & 4 & \(p\) & \[
t
\] & \(\ddagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 中4 & 「 & \({ }^{7}\) & 中 \({ }^{\text {a }}\) & & & \＆ & & & ＊ & \\
\hline Volume（veh／h） & 10 & 830 & 165 & 255 & 745 & 5 & 160 & 10 & 165 & 5 & 15 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate，veh／h & 11 & 883 & 0 & 271 & 793 & 5 & 170 & 11 & 176 & 5 & 16 & 5 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh，\％ & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap，veh／h & 19 & 1070 & 479 & 322 & 1705 & 11 & 269 & 29 & 199 & 123 & 319 & 87 \\
\hline Arrive On Green & 0.01 & 0.32 & 0.00 & 0.19 & 0.50 & 0.50 & 0.28 & 0.28 & 0.28 & 0.28 & 0.28 & 0.28 \\
\hline Sat Flow，veh／h & 1691 & 3374 & 1509 & 1691 & 3437 & 22 & 624 & 104 & 708 & 168 & 1134 & 310 \\
\hline Grp Volume（v），veh／h & 11 & 883 & 0 & 271 & 389 & 409 & 357 & 0 & 0 & 26 & 0 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1436 & 0 & 0 & 1613 & 0 & 0 \\
\hline Q Serve（g＿s），s & 0.4 & 13.8 & 0.0 & 8.8 & 8.6 & 8.6 & 12.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.4 & 13.8 & 0.0 & 8.8 & 8.6 & 8.6 & 13.5 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.48 & & 0.49 & 0.19 & & 0.19 \\
\hline Lane Grp Cap（c），veh／h & 19 & 1070 & 479 & 322 & 837 & 879 & 498 & 0 & 0 & 530 & 0 & 0 \\
\hline V／C Ratio（X） & 0.58 & 0.82 & 0.00 & 0.84 & 0.46 & 0.47 & 0.72 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 119 & 1128 & 505 & 387 & 837 & 879 & 498 & 0 & 0 & 530 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 28.0 & 17.9 & 0.0 & 22.2 & 9.4 & 9.4 & 19.4 & 0.0 & 0.0 & 14.9 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 25.0 & 4.9 & 0.0 & 13.4 & 0.4 & 0.4 & 8.6 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 0.3 & 7.1 & 0.0 & 5.3 & 4.1 & 4.3 & 6.5 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 52.9 & 22.9 & 0.0 & 35.6 & 9.8 & 9.8 & 28.0 & 0.0 & 0.0 & 15.1 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & D & A & A & C & & & B & & \\
\hline Approach Vol，veh／h & & 894 & & & 1069 & & & 357 & & & 26 & \\
\hline Approach Delay，s／veh & & 23.2 & & & 16.3 & & & 28.0 & & & 15.1 & \\
\hline Approach LOS & & C & & & B & & & C & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 20.0 & 14.8 & 22.0 & & 20.0 & 4.6 & 32.2 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 16.0 & 13.0 & 19.0 & & 16.0 & 4.0 & 28.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 15.5 & 10.8 & 15.8 & & 2.6 & 2.4 & 10.6 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.1 & 0.2 & 2.3 & & 2.0 & 0.0 & 9.2 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 20.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 27 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 365 & 310 & 0 & 70 & 335 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 429 & 365 & 0 & 82 & 394 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lcrr} 
Approach & WB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & NB & 2 & 2 \\
Conflicting Approach Left & 2 & & WB \\
Conflicting Lanes Left & SB & 0 & 1 \\
Conflicting Approach Right & 2 & WB & \\
Conflicting Lanes Right & 24.9 & 1 & 0 \\
HCM Control Delay & C & 27.1 & 28.5 \\
HCM LOS & & D & D \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 365 & 310 & 315 & 70 & 335 \\
LT Vol & 365 & 0 & 0 & 0 & 335 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 429 & 365 & 371 & 82 & 394 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.824 & 0.627 & 0.705 & 0.177 & 0.789 \\
Departure Headway (Hd) & 6.907 & 6.189 & 6.953 & 7.72 & 7.206 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 528 & 587 & 523 & 467 & 504 \\
Service Time & 4.62 & 3.901 & 4.953 & 5.434 & 4.92 \\
HCM Lane V/C Ratio & 0.813 & 0.622 & 0.709 & 0.176 & 0.782 \\
HCM Control Delay & 34.3 & 18.7 & 24.9 & 12.1 & 31.9 \\
HCM Lane LOS & D & C & C & B & D \\
HCM 95th-tile Q & 8.2 & 4.3 & 5.6 & 0.6 & 7.2
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 41 & & & & & & & & \\
\hline Intersection LOS & E & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 240 & 25 & 0 & 5 & 385 & 0 & 405 & 295 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 267 & 28 & 0 & 6 & 428 & 0 & 450 & 328 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 19.4 & & & 23.4 & & & 58.9 & \\
\hline HCM LOS & & C & & & C & & & F & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(1 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(99 \%\) & \(0 \%\) & \(0 \%\) & \(58 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(42 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 390 & 240 & 25 & 700 \\
LT Vol & 08 & 0 & 0 & 405 \\
Through Vol & 0 & 0 & 25 & 295 \\
RT Vol & 5 & 240 & 0 & 0 \\
Lane Flow Rate & 433 & 267 & 28 & 778 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.724 & 0.573 & 0.05 & 1 \\
Departure Headway (Hd) & 6.017 & 7.74 & 6.51 & 5.615 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 598 & 467 & 547 & 653 \\
Service Time & 4.087 & 5.483 & 4.283 & 3.615 \\
HCM Lane V/C Ratio & 0.724 & 0.572 & 0.051 & 1.191 \\
HCM Control Delay & 23.4 & 20.4 & 9.6 & 58.9 \\
HCM Lane LOS & C & C & A & F \\
HCM 95th-tile Q & 6.1 & 3.5 & 0.2 & 15.5
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & 7 & \(\leftarrow\) & & \(\rightarrow\) & \(\pm\) & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 78 & 464 & 47 & 16 & 21 & 1010 & 47 & 453 & 1068 & 31 \\
\hline v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.93 & 0.52 & 0.03 \\
\hline Control Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Length 50th (tt) & 27 & 0 & 16 & 0 & 9 & 224 & 0 & 187 & 107 & 0 \\
\hline Queue Length 95th (tt) & 60 & 0 & 41 & 0 & 30 & \#350 & 0 & \#354 & 207 & 2 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length (tt) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 362 & 1553 & 381 & 485 & 99 & 1047 & 565 & 499 & 2065 & 955 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.91 & 0.52 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & V & \(\rightarrow\) & T & 倞 & & & \(\checkmark\) & 4 & 4 & 4 & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \({ }_{4}{ }^{-1}\) & 「＇ & & 4 & 「＇ & \({ }^{7}\) & 44 & 「＇ & \({ }^{7}\) & 中4 & 「 \\
\hline Volume（veh／h） & 50 & 25 & 445 & 25 & 20 & 15 & 20 & 970 & 45 & 435 & 1025 & 30 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 52 & 26 & 0 & 26 & 21 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 306 & 136 & 379 & 271 & 196 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline Arrive On Green & 0.24 & 0.24 & 0.00 & 0.24 & 0.24 & 0.24 & 0.02 & 0.30 & 0.00 & 0.28 & 0.56 & 0.00 \\
\hline Sat Flow，veh／h & 900 & 557 & 1553 & 780 & 804 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 78 & 0 & 0 & 47 & 0 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1457 & 0 & 1553 & 1584 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 3.1 & 0.0 & 0.0 & 1.4 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.55 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline V／C Ratio（X） & 0.18 & 0.00 & 0.00 & 0.10 & 0.00 & 0.04 & 0.63 & 0.97 & 0.00 & 0.92 & 0.54 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 100 & 1046 & 468 & 499 & 1960 & 877 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 21.1 & 0.0 & 0.0 & 20.4 & 0.0 & 20.1 & 33.9 & 24.0 & 0.0 & 24.3 & 9.5 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.2 & 0.0 & 0.0 & 0.4 & 0.0 & 0.2 & 17.9 & 19.9 & 0.0 & 22.6 & 0.3 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 1.2 & 0.0 & 0.0 & 0.8 & 0.0 & 0.3 & 0.6 & 12.4 & 0.0 & 11.5 & 6.5 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 21.2 & 0.0 & 0.0 & 20.9 & 0.0 & 20.3 & 51.8 & 43.9 & 0.0 & 46.8 & 9.9 & 0.0 \\
\hline LnGrp LOS & C & & & C & & C & D & D & & D & A & \\
\hline Approach Vol，veh／h & & 78 & & & 63 & & & 1031 & & & 1521 & \\
\hline Approach Delay，s／veh & & 21.2 & & & 20.7 & & & 44.0 & & & 20.9 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 23.7 & 25.0 & & 21.0 & 5.3 & 43.3 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 20.0 & 21.0 & & 17.0 & 4.0 & 37.0 & & & & \\
\hline Max Q Clear Time（g＿c＋l1），s & & 5.1 & 19.6 & 22.0 & & 3.4 & 2.8 & 15.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.5 & 0.1 & 0.0 & & 0.5 & 0.0 & 13.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 29.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 505 & 0 & 1100 & 444 \\
\hline Stage 1 & - & - & - & - & 444 & \\
\hline Stage 2 & - & - & - & - & 656 & \\
\hline Critical Hdwy & - & & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1049 & - & 233 & 610 \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & & - & - & 513 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & - & 1049 & - & 195 & 610 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 195 & \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & - & - & - & 429 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.3 & 65.1 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 317 & - & - & 1049 & - \\
HCM Lane V/C Ratio & 0.899 & - & - & 0.128 & - \\
HCM Control Delay (s) & 65.1 & - & - & 8.9 & 0 \\
HCM Lane LOS & F & - & - & A & A \\
HCM 95th \%tile Q(veh) & 8.5 & - & - & 0.4 & -
\end{tabular}

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & 4 & 4 & \(\dagger\) & \(\frac{1}{1}\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBT & SBT & SBR \\
\hline Lane Group Flow (vph) & 10 & 901 & 49 & 76 & 927 & 36 & 146 & 58 & 21 \\
\hline v/c Ratio & 0.07 & 0.76 & 0.08 & 0.48 & 0.66 & 0.05 & 0.24 & 0.10 & 0.03 \\
\hline Control Delay & 22.4 & 19.1 & 0.9 & 35.2 & 14.5 & 0.1 & 8.5 & 11.7 & 0.1 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 22.4 & 19.1 & 0.9 & 35.2 & 14.5 & 0.1 & 8.5 & 11.7 & 0.1 \\
\hline Queue Length 50th (ft) & 3 & 120 & 0 & 22 & 88 & 0 & 16 & 11 & 0 \\
\hline Queue Length 95th (ft) & 14 & \#183 & 4 & \#69 & \#197 & 0 & 48 & 31 & 0 \\
\hline Internal Link Dist (ft) & & 2069 & & & 2822 & & 414 & 312 & \\
\hline Turn Bay Length (ft) & 260 & & 260 & 260 & & 290 & & & 30 \\
\hline Base Capacity (vph) & 153 & 1303 & 668 & 157 & 1523 & 742 & 616 & 589 & 650 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.07 & 0.69 & 0.07 & 0.48 & 0.61 & 0.05 & 0.24 & 0.10 & 0.03 \\
\hline \multicolumn{10}{|l|}{Intersection Summary} \\
\hline \multicolumn{10}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & \(\checkmark\) & 7 & & 4 & \[
4
\] & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 中4 & 「 & \({ }^{*}\) & 中4 & 「 & & \＆ & & & \(\uparrow\) & 「 \\
\hline Volume（veh／h） & 10 & 865 & 45 & 70 & 890 & 35 & 60 & 15 & 60 & 30 & 25 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1810 & 1810 & 1863 & 1863 & 1810 & 1810 & 1900 & 1863 & 1900 & 1900 & 1834 & 1810 \\
\hline Adj Flow Rate，veh／h & 10 & 901 & 49 & 76 & 927 & 36 & 65 & 16 & 65 & 31 & 27 & 21 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.92 & 0.92 & 0.96 & 0.96 & 0.92 & 0.92 & 0.92 & 0.96 & 0.92 & 0.96 \\
\hline Percent Heavy Veh，\％ & 5 & 5 & 2 & 2 & 5 & 5 & 2 & 2 & 2 & 2 & 2 & 5 \\
\hline Cap，veh／h & 18 & 1139 & 525 & 95 & 1287 & 576 & 315 & 101 & 245 & 381 & 297 & 555 \\
\hline Arrive On Green & 0.01 & 0.33 & 0.33 & 0.05 & 0.37 & 0.37 & 0.36 & 0.36 & 0.36 & 0.36 & 0.36 & 0.36 \\
\hline Sat Flow，veh／h & 1723 & 3438 & 1583 & 1774 & 3438 & 1538 & 568 & 279 & 680 & 730 & 824 & 1538 \\
\hline Grp Volume（v），veh／h & 10 & 901 & 49 & 76 & 927 & 36 & 146 & 0 & 0 & 58 & 0 & 21 \\
\hline Grp Sat Flow（s），veh／h／ln & 1723 & 1719 & 1583 & 1774 & 1719 & 1538 & 1528 & 0 & 0 & 1554 & 0 & 1538 \\
\hline Q Serve（g＿s），s & 0.3 & 11.2 & 1.0 & 2.0 & 10.9 & 0.7 & 0.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 \\
\hline Cycle Q Clear（g＿c），s & 0.3 & 11.2 & 1.0 & 2.0 & 10.9 & 0.7 & 2.8 & 0.0 & 0.0 & 1.0 & 0.0 & 0.4 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 0.45 & & 0.45 & 0.53 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 18 & 1139 & 525 & 95 & 1287 & 576 & 661 & 0 & 0 & 678 & 0 & 555 \\
\hline V／C Ratio（X） & 0.56 & 0.79 & 0.09 & 0.80 & 0.72 & 0.06 & 0.22 & 0.00 & 0.00 & 0.09 & 0.00 & 0.04 \\
\hline Avail Cap（c＿a），veh／h & 146 & 1240 & 571 & 151 & 1287 & 576 & 661 & 0 & 0 & 678 & 0 & 555 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 23.2 & 14.3 & 10.9 & 22.1 & 12.6 & 9.4 & 10.5 & 0.0 & 0.0 & 10.0 & 0.0 & 9.8 \\
\hline Incr Delay（d2），s／veh & 24.3 & 3.3 & 0.1 & 14.7 & 2.0 & 0.0 & 0.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.1 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 0.2 & 5.8 & 0.4 & 1.4 & 5.5 & 0.3 & 1.3 & 0.0 & 0.0 & 0.5 & 0.0 & 0.2 \\
\hline LnGrp Delay（d），s／veh & 47.5 & 17.6 & 11.0 & 36.7 & 14.6 & 9.5 & 10.7 & 0.0 & 0.0 & 10.2 & 0.0 & 9.9 \\
\hline LnGrp LOS & D & B & B & D & B & A & B & & & B & & A \\
\hline Approach Vol，veh／h & & 960 & & & 1039 & & & 146 & & & 79 & \\
\hline Approach Delay，s／veh & & 17.6 & & & 16.1 & & & 10.7 & & & 10.1 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R c\) ），\(s\) & & 21.0 & 6.5 & 19.6 & & 21.0 & 4.5 & 21.6 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 4.0 & 17.0 & & 17.0 & 4.0 & 17.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 4.8 & 4.0 & 13.2 & & 3.0 & 2.3 & 12.9 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.9 & 0.0 & 2.4 & & 1.0 & 0.0 & 3.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 16.1 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{6}{|c|}{3.9} \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Vol, veh/h & 35 & 100 & 140 & 115 & 85 & 65 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & - & - & - & - & 0 & \\
\hline Veh in Median Storage, \# & & 0 & 0 & - & 0 & \\
\hline Grade, \% & & 0 & 0 & & 0 & \\
\hline Peak Hour Factor & 90 & 90 & 90 & 90 & 90 & 90 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mumt Flow & 39 & 111 & 156 & 128 & 94 & 72 \\
\hline Major/Minor & Major1 & & Major2 & & Minor2 & \\
\hline Conflicting Flow All & 283 & 0 & - & 0 & 408 & 219 \\
\hline Stage 1 & - & - & - & - & 219 & \\
\hline Stage 2 & - & - & - & - & 189 & \\
\hline Critical Hdwy & 4.13 & - & - & - & 6.43 & 6.23 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.43 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.43 & \\
\hline Follow-up Hdwy & 2.227 & - & - & - & 3.527 & 3.327 \\
\hline Pot Cap-1 Maneuver & 1274 & - & - & - & 597 & 818 \\
\hline Stage 1 & - & - & - & - & 815 & \\
\hline Stage 2 & - & - & - & - & 841 & \\
\hline Platoon blocked, \% & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & 1274 & - & - & - & 577 & 818 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 577 & - \\
\hline Stage 1 & - & - & - & - & 815 & \\
\hline Stage 2 & - & - & - & - & 813 & \\
\hline
\end{tabular}
\begin{tabular}{lcrc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2.1 & 0 & 12.3 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1274 & - & - & - & 661 \\
HCM Lane V/C Ratio & 0.031 & - & - & - & 0.252 \\
\hline HCM Control Delay (s) & 7.9 & 0 & - & - & 12.3 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 1
\end{tabular}

HCM 2010 TWSC
5: Evergreen Dr \& Sunset Hwy

\begin{tabular}{lrcr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.3 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 509 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.196 & 0.104 & - & - & 0.033 & - \\
HCM Control Delay (s) & 13.8 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 952 & 112 & 197 & 877 & 229 & 26 \\
\hline v/c Ratio & 0.10 & 0.83 & 0.18 & 0.72 & 0.48 & 0.48 & 0.05 \\
\hline Control Delay & 28.3 & 25.5 & 1.9 & 41.0 & 9.8 & 14.4 & 14.1 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 28.3 & 25.5 & 1.9 & 41.0 & 9.8 & 14.4 & 14.1 \\
\hline Queue Length 50th (t) & 4 & 160 & 0 & 68 & 82 & 38 & 6 \\
\hline Queue Length 95th ( t ) & 17 & \#236 & 14 & \#154 & 167 & 95 & 21 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 115 & 1212 & 647 & 288 & 1838 & 480 & 480 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.10 & 0.79 & 0.17 & 0.68 & 0.48 & 0.48 & 0.05 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & & 4 & \[
4
\] & 4 & \% & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & \({ }^{7}\) & 中 \(\%\) & & & \& & & & \& & \\
\hline Volume (veh/h) & 10 & 895 & 105 & 185 & 820 & 5 & 90 & 10 & 115 & 5 & 15 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 952 & 0 & 197 & 872 & 5 & 96 & 11 & 122 & 5 & 16 & 5 \\
\hline Adj No. of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap, veh/h & 19 & 1172 & 524 & 242 & 1648 & 9 & 240 & 54 & 233 & 129 & 341 & 94 \\
\hline Arrive On Green & 0.01 & 0.35 & 0.00 & 0.14 & 0.48 & 0.48 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 & 0.30 \\
\hline Sat Flow, veh/h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 504 & 180 & 780 & 178 & 1143 & 314 \\
\hline Grp Volume(v), veh/h & 11 & 952 & 0 & 197 & 428 & 449 & 229 & 0 & 0 & 26 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1464 & 0 & 0 & 1635 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.4 & 14.6 & 0.0 & 6.4 & 10.1 & 10.1 & 4.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.4 & 14.6 & 0.0 & 6.4 & 10.1 & 10.1 & 7.2 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.42 & & 0.53 & 0.19 & & 0.19 \\
\hline Lane Grp Cap(c), veh/h & 19 & 1172 & 524 & 242 & 808 & 849 & 527 & 0 & 0 & 564 & 0 & 0 \\
\hline V/C Ratio(X) & 0.58 & 0.81 & 0.00 & 0.82 & 0.53 & 0.53 & 0.43 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 119 & 1245 & 557 & 297 & 808 & 849 & 527 & 0 & 0 & 564 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 28.0 & 16.9 & 0.0 & 23.7 & 10.3 & 10.3 & 16.4 & 0.0 & 0.0 & 14.2 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 25.0 & 4.0 & 0.0 & 13.3 & 0.7 & 0.6 & 2.6 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 7.4 & 0.0 & 3.9 & 4.8 & 5.0 & 3.3 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 53.0 & 20.9 & 0.0 & 37.0 & 11.0 & 11.0 & 19.0 & 0.0 & 0.0 & 14.4 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & D & B & B & B & & & B & & \\
\hline Approach Vol, veh/h & & 963 & & & 1074 & & & 229 & & & 26 & \\
\hline Approach Delay, s/veh & & 21.2 & & & 15.8 & & & 19.0 & & & 14.4 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R c\) ), \(s\) & & 21.0 & 12.1 & 23.8 & & 21.0 & 4.6 & 31.3 & & & & \\
\hline Change Period (Y+Rc), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 17.0 & 10.0 & 21.0 & & 17.0 & 4.0 & 27.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 9.2 & 8.4 & 16.6 & & 2.6 & 2.4 & 12.1 & & & & \\
\hline Green Ext Time (p_c), s & & 0.9 & 0.1 & 3.2 & & 1.3 & 0.0 & 9.1 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 18.4 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.6 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 245 & 310 & 0 & 70 & 205 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 288 & 365 & 0 & 82 & 241 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lcrr} 
Approach & WB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & NB & 2 & 2 \\
Conflicting Approach Left & 2 & & WB \\
Conflicting Lanes Left & SB & 0 & 1 \\
Conflicting Approach Right & 2 & WB & \\
Conflicting Lanes Right & 20.2 & 1 & 0 \\
HCM Control Delay & C & 15.8 & 14.1 \\
HCM LOS & & C & B \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \% & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 245 & 310 & 315 & 70 & 205 \\
LT Vol & 245 & 0 & 0 & 0 & 205 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 288 & 365 & 371 & 82 & 241 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.511 & 0.575 & 0.647 & 0.166 & 0.452 \\
Departure Headway (Hd) & 6.388 & 5.674 & 6.289 & 7.264 & 6.752 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 562 & 635 & 574 & 492 & 531 \\
Service Time & 4.153 & 3.438 & 4.344 & 5.038 & 4.526 \\
HCM Lane V/C Ratio & 0.512 & 0.575 & 0.646 & 0.167 & 0.454 \\
HCM Control Delay & 15.7 & 15.9 & 20.2 & 11.5 & 15 \\
HCM Lane LOS & C & C & C & B & B \\
HCM 95th-tile Q & 2.9 & 3.7 & 4.6 & 0.6 & 2.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 27.2 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 190 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 211 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.2 & & & 15.8 & & & 37.9 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 190 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 190 & 0 & 0 \\
Lane Flow Rate & 350 & 211 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.556 & 0.439 & 0.048 & 0.908 \\
Departure Headway (Hd) & 5.714 & 7.491 & 6.264 & 5.119 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 630 & 479 & 569 & 703 \\
Service Time & 3.776 & 5.257 & 4.029 & 3.172 \\
HCM Lane V/C Ratio & 0.556 & 0.441 & 0.049 & 0.909 \\
HCM Control Delay & 15.8 & 16 & 9.3 & 37.9 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.4 & 2.2 & 0.2 & 11.9
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & 7 & \(\leftarrow\) & & \(\rightarrow\) & \(\pm\) & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 78 & 464 & 47 & 16 & 21 & 1010 & 47 & 453 & 1068 & 31 \\
\hline v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.93 & 0.52 & 0.03 \\
\hline Control Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Length 50th (tt) & 27 & 0 & 16 & 0 & 9 & 224 & 0 & 187 & 107 & 0 \\
\hline Queue Length 95th (tt) & 60 & 0 & 41 & 0 & 30 & \#350 & 0 & \#354 & 207 & 2 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length (tt) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 362 & 1553 & 381 & 485 & 99 & 1047 & 565 & 499 & 2065 & 955 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.91 & 0.52 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \％ & \(\rightarrow\) & W & 5 & & & & ＋ & 4 & \(\cdots\) & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \({ }_{*}\) & 「＇ & & \(\uparrow\) & 「＇ & \({ }^{*}\) & 44 & 「 & \({ }^{7}\) & 中4 & 「 \\
\hline Volume（veh／h） & 50 & 25 & 445 & 25 & 20 & 15 & 20 & 970 & 45 & 435 & 1025 & 30 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 52 & 26 & 0 & 26 & 21 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 306 & 136 & 379 & 271 & 196 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline Arrive On Green & 0.24 & 0.24 & 0.00 & 0.24 & 0.24 & 0.24 & 0.02 & 0.30 & 0.00 & 0.28 & 0.56 & 0.00 \\
\hline Sat Flow，veh／h & 900 & 557 & 1553 & 780 & 804 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 78 & 0 & 0 & 47 & 0 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1457 & 0 & 1553 & 1584 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 3.1 & 0.0 & 0.0 & 1.4 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.55 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline V／C Ratio（X） & 0.18 & 0.00 & 0.00 & 0.10 & 0.00 & 0.04 & 0.63 & 0.97 & 0.00 & 0.92 & 0.54 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 100 & 1046 & 468 & 499 & 1960 & 877 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 21.1 & 0.0 & 0.0 & 20.4 & 0.0 & 20.1 & 33.9 & 24.0 & 0.0 & 24.3 & 9.5 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.2 & 0.0 & 0.0 & 0.4 & 0.0 & 0.2 & 17.9 & 19.9 & 0.0 & 22.6 & 0.3 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 1.2 & 0.0 & 0.0 & 0.8 & 0.0 & 0.3 & 0.6 & 12.4 & 0.0 & 11.5 & 6.5 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 21.2 & 0.0 & 0.0 & 20.9 & 0.0 & 20.3 & 51.8 & 43.9 & 0.0 & 46.8 & 9.9 & 0.0 \\
\hline LnGrp LOS & C & & & C & & C & D & D & & D & A & \\
\hline Approach Vol，veh／h & & 78 & & & 63 & & & 1031 & & & 1521 & \\
\hline Approach Delay，s／veh & & 21.2 & & & 20.7 & & & 44.0 & & & 20.9 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），s & & 21.0 & 23.7 & 25.0 & & 21.0 & 5.3 & 43.3 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 20.0 & 21.0 & & 17.0 & 4.0 & 37.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 5.1 & 19.6 & 22.0 & & 3.4 & 2.8 & 15.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.5 & 0.1 & 0.0 & & 0.5 & 0.0 & 13.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 29.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 505 & 0 & 1100 & 444 \\
\hline Stage 1 & - & - & - & - & 444 & \\
\hline Stage 2 & - & - & - & - & 656 & \\
\hline Critical Hdwy & - & & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1049 & - & 233 & 610 \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & & - & - & 513 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & - & 1049 & - & 195 & 610 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 195 & \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & - & - & - & 429 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.3 & 65.1 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 317 & - & - & 1049 & - \\
HCM Lane V/C Ratio & 0.899 & - & - & 0.128 & - \\
HCM Control Delay (s) & 65.1 & - & - & 8.9 & 0 \\
HCM Lane LOS & F & - & - & A & A \\
HCM 95th \%tile Q(veh) & 8.5 & - & - & 0.4 & -
\end{tabular}

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\prime\) & \(\rightarrow\) & \(\leftarrow\) & 4 & \(\checkmark\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Group Flow (vph) & 10 & 984 & 1005 & 36 & 31 & 47 \\
\hline v/c Ratio & 0.05 & 0.74 & 0.75 & 0.06 & 0.09 & 0.07 \\
\hline Control Delay & 8.3 & 14.3 & 14.8 & 3.7 & 11.4 & 4.3 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 8.3 & 14.3 & 14.8 & 3.7 & 11.4 & 4.3 \\
\hline Queue Length 50th ( t ) & 1 & 91 & 93 & 0 & 6 & 1 \\
\hline Queue Length 95th ( t ) & 8 & 142 & 146 & 11 & 14 & 14 \\
\hline Internal Link Dist (tt) & & 1995 & 2822 & & 312 & \\
\hline Turn Bay Length (t) & 260 & & & 290 & 30 & 30 \\
\hline Base Capacity (vph) & 194 & 1403 & 1403 & 648 & 701 & 649 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.05 & 0.70 & 0.72 & 0.06 & 0.04 & 0.07 \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
}


Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.2 & 1.9 & 12 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 571 & 1381 & - & - & 1368 & - & - & 493 \\
HCM Lane V/C Ratio & 0.104 & 0.004 & - & - & 0.042 & - & - & 0.015 \\
\hline HCM Control Delay (s) & 12 & 7.6 & 0 & - & 7.7 & 0 & - & 12.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.3 & 0 & - & - & 0.1 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 478 & 495 & 177 \\
\(\quad\) Stage 1 & 292 & 292 & - \\
\(\quad\) Stage 2 & 186 & 203 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 494 & 473 & 861 \\
\(\quad\) Stage 1 & 712 & 667 & - \\
\(\quad\) Stage 2 & 811 & 730 & - \\
Platoon blocked, \% & 462 & 449 & 861 \\
\hline Mov Cap-1 Maneuver & 462 & 449 & - \\
Mov Cap-2 Maneuver & 709 & 636 & - \\
\hline Stage 1 & 786 & 727 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 12.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 0.3 & & & & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Vol, veh/h & 5 & 185 & 250 & 5 & 5 & 5 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & - & - & - & - & 0 & - \\
\hline Veh in Median Storage, \# & - & 0 & 0 & - & 0 & - \\
\hline Grade, \% & - & 0 & 0 & - & 0 & - \\
\hline Peak Hour Factor & 90 & 90 & 90 & 90 & 90 & 90 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mvmt Flow & 6 & 206 & 278 & 6 & 6 & 6 \\
\hline Major/Minor & Major1 & & Major2 & & Minor2 & \\
\hline Conflicting Flow All & 283 & 0 & - & 0 & 498 & 281 \\
\hline Stage 1 & - & - & - & - & 281 & - \\
\hline Stage 2 & - & - & - & - & 217 & - \\
\hline Critical Hdwy & 4.13 & - & - & - & 6.43 & 6.23 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.43 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.43 & - \\
\hline Follow-up Hdwy & 2.227 & - & - & - & 3.527 & 3.327 \\
\hline Pot Cap-1 Maneuver & 1274 & - & - & - & 530 & 755 \\
\hline Stage 1 & - & - & - & - & 764 & - \\
\hline Stage 2 & - & - & - & - & 817 & - \\
\hline Platoon blocked, \% & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & 1274 & - & - & - & 527 & 755 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 527 & - \\
\hline Stage 1 & - & - & - & - & 764 & - \\
\hline Stage 2 & - & - & - & - & 813 & - \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 0.2 & 0 & 10.9 \\
HCM LOS & & \(B\)
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1274 & - & - & - & 621 \\
HCM Lane V/C Ratio & 0.004 & - & - & - & 0.018 \\
\hline HCM Control Delay (s) & 7.8 & 0 & - & - & 10.9 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0 & - & - & - & 0.1
\end{tabular}

HCM 2010 TWSC
5: Evergreen Dr \& Sunset Hwy

\begin{tabular}{lrrr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.3 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 509 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.196 & 0.104 & - & - & 0.033 & - \\
HCM Control Delay (s) & 13.8 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\geqslant\) & 7 & & \(\dagger\) & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 947 & 112 & 202 & 877 & 229 & 26 \\
\hline v/c Ratio & 0.09 & 0.82 & 0.18 & 0.68 & 0.47 & 0.50 & 0.06 \\
\hline Control Delay & 28.3 & 25.0 & 1.9 & 36.8 & 9.1 & 15.6 & 14.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 28.3 & 25.0 & 1.9 & 36.8 & 9.1 & 15.6 & 14.8 \\
\hline Queue Length 50th (tt) & 4 & 158 & 0 & 69 & 77 & 40 & 6 \\
\hline Queue Length 95th (t) & 17 & \#233 & 14 & \#148 & 161 & 98 & 21 \\
\hline Internal Link Dist (t) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (tt) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 116 & 1222 & 651 & 320 & 1894 & 458 & 456 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.77 & 0.17 & 0.63 & 0.46 & 0.50 & 0.06 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & & 4 & \[
4
\] & 4 & \% & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & \({ }^{7}\) & 中 \(\%\) & & & \& & & & \& & \\
\hline Volume (veh/h) & 10 & 890 & 105 & 190 & 820 & 5 & 90 & 10 & 115 & 5 & 15 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 947 & 0 & 202 & 872 & 5 & 96 & 11 & 122 & 5 & 16 & 5 \\
\hline Adj No. of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap, veh/h & 19 & 1194 & 534 & 249 & 1684 & 10 & 233 & 53 & 223 & 126 & 328 & 90 \\
\hline Arrive On Green & 0.01 & 0.35 & 0.00 & 0.15 & 0.49 & 0.49 & 0.29 & 0.29 & 0.29 & 0.29 & 0.29 & 0.29 \\
\hline Sat Flow, veh/h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 498 & 187 & 781 & 173 & 1151 & 315 \\
\hline Grp Volume(v), veh/h & 11 & 947 & 0 & 202 & 428 & 449 & 229 & 0 & 0 & 26 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1466 & 0 & 0 & 1640 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.4 & 14.1 & 0.0 & 6.5 & 9.7 & 9.7 & 4.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.4 & 14.1 & 0.0 & 6.5 & 9.7 & 9.7 & 7.2 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.42 & & 0.53 & 0.19 & & 0.19 \\
\hline Lane Grp Cap(c), veh/h & 19 & 1194 & 534 & 249 & 826 & 868 & 509 & 0 & 0 & 544 & 0 & 0 \\
\hline V/C Ratio(X) & 0.58 & 0.79 & 0.00 & 0.81 & 0.52 & 0.52 & 0.45 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 121 & 1263 & 565 & 332 & 842 & 885 & 509 & 0 & 0 & 544 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 27.6 & 16.3 & 0.0 & 23.2 & 9.8 & 9.8 & 16.8 & 0.0 & 0.0 & 14.6 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 24.9 & 3.4 & 0.0 & 10.8 & 0.5 & 0.5 & 2.9 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 7.1 & 0.0 & 3.8 & 4.6 & 4.9 & 3.4 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 52.5 & 19.7 & 0.0 & 34.0 & 10.3 & 10.3 & 19.7 & 0.0 & 0.0 & 14.7 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & B & & C & B & B & B & & & B & & \\
\hline Approach Vol, veh/h & & 958 & & & 1079 & & & 229 & & & 26 & \\
\hline Approach Delay, s/veh & & 20.0 & & & 14.7 & & & 19.7 & & & 14.7 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 20.0 & 12.2 & 23.9 & & 20.0 & 4.6 & 31.5 & & & & \\
\hline Change Period (Y+Rc), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 16.0 & 11.0 & 21.0 & & 16.0 & 4.0 & 28.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 9.2 & 8.5 & 16.1 & & 2.6 & 2.4 & 11.7 & & & & \\
\hline Green Ext Time (p_c), s & & 0.8 & 0.1 & 3.7 & & 1.2 & 0.0 & 9.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 17.4 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.6 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 245 & 310 & 0 & 70 & 205 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 288 & 365 & 0 & 82 & 241 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lcrr} 
Approach & WB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & NB & 2 & 2 \\
Conflicting Approach Left & 2 & & WB \\
Conflicting Lanes Left & SB & 0 & 1 \\
Conflicting Approach Right & 2 & WB & \\
Conflicting Lanes Right & 20.2 & 1 & 0 \\
HCM Control Delay & C & 15.8 & 14.1 \\
HCM LOS & & C & B \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \% & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 245 & 310 & 315 & 70 & 205 \\
LT Vol & 245 & 0 & 0 & 0 & 205 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 288 & 365 & 371 & 82 & 241 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.511 & 0.575 & 0.647 & 0.166 & 0.452 \\
Departure Headway (Hd) & 6.388 & 5.674 & 6.289 & 7.264 & 6.752 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 562 & 635 & 574 & 492 & 531 \\
Service Time & 4.153 & 3.438 & 4.344 & 5.038 & 4.526 \\
HCM Lane V/C Ratio & 0.512 & 0.575 & 0.646 & 0.167 & 0.454 \\
HCM Control Delay & 15.7 & 15.9 & 20.2 & 11.5 & 15 \\
HCM Lane LOS & C & C & C & B & B \\
HCM 95th-tile Q & 2.9 & 3.7 & 4.6 & 0.6 & 2.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 27.2 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 190 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 211 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.2 & & & 15.8 & & & 37.9 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 190 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 190 & 0 & 0 \\
Lane Flow Rate & 350 & 211 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.556 & 0.439 & 0.048 & 0.908 \\
Departure Headway (Hd) & 5.714 & 7.491 & 6.264 & 5.119 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 630 & 479 & 569 & 703 \\
Service Time & 3.776 & 5.257 & 4.029 & 3.172 \\
HCM Lane V/C Ratio & 0.556 & 0.441 & 0.049 & 0.909 \\
HCM Control Delay & 15.8 & 16 & 9.3 & 37.9 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.4 & 2.2 & 0.2 & 11.9
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & 7 & \(\leftarrow\) & & \(\rightarrow\) & \(\pm\) & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 78 & 464 & 47 & 16 & 21 & 1010 & 47 & 453 & 1068 & 31 \\
\hline v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.93 & 0.52 & 0.03 \\
\hline Control Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Length 50th (tt) & 27 & 0 & 16 & 0 & 9 & 224 & 0 & 187 & 107 & 0 \\
\hline Queue Length 95th (tt) & 60 & 0 & 41 & 0 & 30 & \#350 & 0 & \#354 & 207 & 2 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length (tt) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 362 & 1553 & 381 & 485 & 99 & 1047 & 565 & 499 & 2065 & 955 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.91 & 0.52 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \％ & \(\rightarrow\) & W & 5 & & & & ＋ & 4 & \(\cdots\) & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \({ }_{*}\) & 「＇ & & \(\uparrow\) & 「＇ & \({ }^{*}\) & 44 & 「 & \({ }^{7}\) & 中4 & 「 \\
\hline Volume（veh／h） & 50 & 25 & 445 & 25 & 20 & 15 & 20 & 970 & 45 & 435 & 1025 & 30 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 52 & 26 & 0 & 26 & 21 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 306 & 136 & 379 & 271 & 196 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline Arrive On Green & 0.24 & 0.24 & 0.00 & 0.24 & 0.24 & 0.24 & 0.02 & 0.30 & 0.00 & 0.28 & 0.56 & 0.00 \\
\hline Sat Flow，veh／h & 900 & 557 & 1553 & 780 & 804 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 78 & 0 & 0 & 47 & 0 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1457 & 0 & 1553 & 1584 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 3.1 & 0.0 & 0.0 & 1.4 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.55 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline V／C Ratio（X） & 0.18 & 0.00 & 0.00 & 0.10 & 0.00 & 0.04 & 0.63 & 0.97 & 0.00 & 0.92 & 0.54 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 100 & 1046 & 468 & 499 & 1960 & 877 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 21.1 & 0.0 & 0.0 & 20.4 & 0.0 & 20.1 & 33.9 & 24.0 & 0.0 & 24.3 & 9.5 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.2 & 0.0 & 0.0 & 0.4 & 0.0 & 0.2 & 17.9 & 19.9 & 0.0 & 22.6 & 0.3 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 1.2 & 0.0 & 0.0 & 0.8 & 0.0 & 0.3 & 0.6 & 12.4 & 0.0 & 11.5 & 6.5 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 21.2 & 0.0 & 0.0 & 20.9 & 0.0 & 20.3 & 51.8 & 43.9 & 0.0 & 46.8 & 9.9 & 0.0 \\
\hline LnGrp LOS & C & & & C & & C & D & D & & D & A & \\
\hline Approach Vol，veh／h & & 78 & & & 63 & & & 1031 & & & 1521 & \\
\hline Approach Delay，s／veh & & 21.2 & & & 20.7 & & & 44.0 & & & 20.9 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），s & & 21.0 & 23.7 & 25.0 & & 21.0 & 5.3 & 43.3 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 20.0 & 21.0 & & 17.0 & 4.0 & 37.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 5.1 & 19.6 & 22.0 & & 3.4 & 2.8 & 15.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.5 & 0.1 & 0.0 & & 0.5 & 0.0 & 13.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 29.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 505 & 0 & 1100 & 444 \\
\hline Stage 1 & - & - & - & - & 444 & \\
\hline Stage 2 & - & - & - & - & 656 & \\
\hline Critical Hdwy & - & & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1049 & - & 233 & 610 \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & & - & - & 513 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & - & 1049 & - & 195 & 610 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 195 & \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & - & - & - & 429 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.3 & 65.1 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 317 & - & - & 1049 & - \\
HCM Lane V/C Ratio & 0.899 & - & - & 0.128 & - \\
HCM Control Delay (s) & 65.1 & - & - & 8.9 & 0 \\
HCM Lane LOS & F & - & - & A & A \\
HCM 95th \%tile Q(veh) & 8.5 & - & - & 0.4 & -
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
& & & & & & \\
& EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Lane Group & 951 & 49 & 98 & 995 & 65 & 82 \\
\hline Lane Group Flow (vph) & 0.32 & 0.04 & 0.21 & 0.34 & 0.17 & 0.22 \\
v/c Ratio & 3.0 & 1.6 & 4.8 & 3.0 & 12.6 & 6.4 \\
Control Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Queue Delay & 3.0 & 1.6 & 4.8 & 3.0 & 12.6 & 6.4 \\
Total Delay & 0 & 0 & 0 & 0 & 7 & 1 \\
Queue Length 50th (ft) & 77 & 7 & 28 & 83 & 31 & 22 \\
Queue Length 95th (tt) & 962 & & & 235 & 1592 & \\
Internal Link Dist (ft) & & 260 & 300 & & & 50 \\
Turn Bay Length (ft) & 2940 & 1323 & 462 & 2940 & 909 & 848 \\
Base Capacity (vph) & 0 & 0 & 0 & 0 & 0 & 0 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0.32 & 0.04 & 0.21 & 0.34 & 0.07 & 0.10 \\
Reduced v/c Ratio & & & & & &
\end{tabular}

\footnotetext{
Intersection Summary
}


Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 8.6 & & & & & & & & \\
\hline Intersection LOS & A & & & & & & & & \\
\hline Movement & SBU & SBL & SBR & SEU & SEL & SET & NWU & NWT & NWR \\
\hline Vol, veh/h & 0 & 110 & 30 & 0 & 25 & 90 & 0 & 85 & 115 \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 0 & 120 & 33 & 0 & 27 & 98 & 0 & 92 & 125 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & SB & & & SE & & & NW & \\
\hline Opposing Approach & & & & & NW & & & SE & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & NW & & & SB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 1 & & & 0 & \\
\hline Conflicting Approach Right & & SE & & & & & & SB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 1 & \\
\hline HCM Control Delay & & 8.9 & & & 8.5 & & & 8.5 & \\
\hline HCM LOS & & A & & & A & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrrr} 
Lane & NWLn1 & SELn1 & SBLn1 \\
\hline Vol Left, \% & \(0 \%\) & \(22 \%\) & \(79 \%\) \\
Vol Thru, \% & \(43 \%\) & \(78 \%\) & \(0 \%\) \\
Vol Right, \% & \(57 \%\) & \(0 \%\) & \(21 \%\) \\
Sign Control & Stop & Stop & Stop \\
Traffic Vol by Lane & 200 & 115 & 140 \\
LT Vol & 85 & 90 & 0 \\
Through Vol & 115 & 0 & 30 \\
RT Vol & 0 & 25 & 110 \\
Lane Flow Rate & 217 & 125 & 152 \\
Geometry Grp & 1 & 1 & 1 \\
Degree of Util (X) & 0.248 & 0.159 & 0.199 \\
Departure Headway (Hd) & 4.106 & 4.575 & 4.704 \\
Convergence, Y/N & Yes & Yes & Yes \\
Cap & 876 & 785 & 764 \\
Service Time & 2.126 & 2.598 & 2.731 \\
HCM Lane V/C Ratio & 0.248 & 0.159 & 0.199 \\
HCM Control Delay & 8.5 & 8.5 & 8.9 \\
HCM Lane LOS & A & A & A \\
HCM 95th-tile Q & 1 & 0.6 & 0.7
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\prime\) & \(\rightarrow\) & \(\leftarrow\) & 4 & \(\checkmark\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Group Flow (vph) & 10 & 958 & 1010 & 36 & 31 & 47 \\
\hline v/c Ratio & 0.05 & 0.72 & 0.76 & 0.06 & 0.09 & 0.07 \\
\hline Control Delay & 8.3 & 13.8 & 14.9 & 3.7 & 11.4 & 4.4 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 8.3 & 13.8 & 14.9 & 3.7 & 11.4 & 4.4 \\
\hline Queue Length 50th ( t ) & 1 & 87 & 94 & 0 & 6 & 1 \\
\hline Queue Length 95th ( t ) & 8 & 137 & 147 & 11 & 14 & 14 \\
\hline Internal Link Dist (tt) & & 2069 & 957 & & 312 & \\
\hline Turn Bay Length (t) & 260 & & & 290 & 30 & 30 \\
\hline Base Capacity (vph) & 194 & 1402 & 1402 & 648 & 701 & 648 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.05 & 0.68 & 0.72 & 0.06 & 0.04 & 0.07 \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
}


Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & \\
\hline Int Delay, slveh & 0.4 & & & & & \\
& & EBL & EBT & WBT & WBR & SBL
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 0.3 & 0 & 10.2 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1334 & - & - & - & 698 \\
HCM Lane V/C Ratio & 0.004 & - & - & - & 0.016 \\
HCM Control Delay (s) & 7.7 & 0 & - & - & 10.2 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0 & - & - & - & 0
\end{tabular}

HCM 2010 TWSC
5: Evergreen Dr \& Sunset Hwy
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & & & & & & \\
\hline Movement & EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Vol, veh/h & 105 & 30 & 45 & 155 & 50 & 100 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & - & - & - & - & 0 & 20 \\
\hline Veh in Median Storage, \# & 0 & - & - & 0 & 0 & \\
\hline Grade, \% & 0 & - & - & 0 & 0 & \\
\hline Peak Hour Factor & 80 & 80 & 80 & 80 & 80 & 80 \\
\hline Heavy Vehicles, \% & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Mvmt Flow & 131 & 38 & 56 & 194 & 62 & 125 \\
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 169 & 0 & 456 & 150 \\
\hline Stage 1 & - & - & - & - & 150 & \\
\hline Stage 2 & - & - & - & - & 306 & \\
\hline Critical Hdwy & - & - & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1396 & - & 559 & 891 \\
\hline Stage 1 & - & - & - & - & 873 & \\
\hline Stage 2 & - & - & - & - & 742 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & - & 1396 & - & 534 & 891 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 534 & \\
\hline Stage 1 & - & - & - & - & 873 & \\
\hline Stage 2 & - & - & - & - & 709 & \\
\hline
\end{tabular}
\begin{tabular}{lrcr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.7 & 10.7 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 534 & 891 & - & - & 1396 & - \\
HCM Lane V/C Ratio & 0.117 & 0.14 & - & - & 0.04 & - \\
\hline HCM Control Delay (s) & 12.6 & 9.7 & - & - & 7.7 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.4 & 0.5 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 947 & 112 & 202 & 877 & 229 & 26 \\
\hline v/c Ratio & 0.09 & 0.82 & 0.18 & 0.68 & 0.47 & 0.50 & 0.06 \\
\hline Control Delay & 28.3 & 25.0 & 1.9 & 36.8 & 9.1 & 15.6 & 14.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 28.3 & 25.0 & 1.9 & 36.8 & 9.1 & 15.6 & 14.8 \\
\hline Queue Length 50th (t) & 4 & 158 & 0 & 69 & 77 & 40 & 6 \\
\hline Queue Length 95th ( t ) & 17 & \#233 & 14 & \#148 & 161 & 98 & 21 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 116 & 1222 & 651 & 320 & 1894 & 458 & 456 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.77 & 0.17 & 0.63 & 0.46 & 0.50 & 0.06 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & & 4 & \[
4
\] & 4 & \% & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & \({ }^{7}\) & 中 \(\%\) & & & \& & & & \& & \\
\hline Volume (veh/h) & 10 & 890 & 105 & 190 & 820 & 5 & 90 & 10 & 115 & 5 & 15 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 947 & 0 & 202 & 872 & 5 & 96 & 11 & 122 & 5 & 16 & 5 \\
\hline Adj No. of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap, veh/h & 19 & 1194 & 534 & 249 & 1684 & 10 & 233 & 53 & 223 & 126 & 328 & 90 \\
\hline Arrive On Green & 0.01 & 0.35 & 0.00 & 0.15 & 0.49 & 0.49 & 0.29 & 0.29 & 0.29 & 0.29 & 0.29 & 0.29 \\
\hline Sat Flow, veh/h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 498 & 187 & 781 & 173 & 1151 & 315 \\
\hline Grp Volume(v), veh/h & 11 & 947 & 0 & 202 & 428 & 449 & 229 & 0 & 0 & 26 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1466 & 0 & 0 & 1640 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.4 & 14.1 & 0.0 & 6.5 & 9.7 & 9.7 & 4.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.4 & 14.1 & 0.0 & 6.5 & 9.7 & 9.7 & 7.2 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.42 & & 0.53 & 0.19 & & 0.19 \\
\hline Lane Grp Cap(c), veh/h & 19 & 1194 & 534 & 249 & 826 & 868 & 509 & 0 & 0 & 544 & 0 & 0 \\
\hline V/C Ratio(X) & 0.58 & 0.79 & 0.00 & 0.81 & 0.52 & 0.52 & 0.45 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 121 & 1263 & 565 & 332 & 842 & 885 & 509 & 0 & 0 & 544 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 27.6 & 16.3 & 0.0 & 23.2 & 9.8 & 9.8 & 16.8 & 0.0 & 0.0 & 14.6 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 24.9 & 3.4 & 0.0 & 10.8 & 0.5 & 0.5 & 2.9 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 7.1 & 0.0 & 3.8 & 4.6 & 4.9 & 3.4 & 0.0 & 0.0 & 0.3 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 52.5 & 19.7 & 0.0 & 34.0 & 10.3 & 10.3 & 19.7 & 0.0 & 0.0 & 14.7 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & B & & C & B & B & B & & & B & & \\
\hline Approach Vol, veh/h & & 958 & & & 1079 & & & 229 & & & 26 & \\
\hline Approach Delay, s/veh & & 20.0 & & & 14.7 & & & 19.7 & & & 14.7 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 20.0 & 12.2 & 23.9 & & 20.0 & 4.6 & 31.5 & & & & \\
\hline Change Period (Y+Rc), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 16.0 & 11.0 & 21.0 & & 16.0 & 4.0 & 28.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 9.2 & 8.5 & 16.1 & & 2.6 & 2.4 & 11.7 & & & & \\
\hline Green Ext Time (p_c), s & & 0.8 & 0.1 & 3.7 & & 1.2 & 0.0 & 9.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 17.4 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.6 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 245 & 310 & 0 & 70 & 205 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 288 & 365 & 0 & 82 & 241 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lcrr} 
Approach & WB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & NB & 2 & 2 \\
Conflicting Approach Left & 2 & & WB \\
Conflicting Lanes Left & SB & 0 & 1 \\
Conflicting Approach Right & 2 & WB & \\
Conflicting Lanes Right & 20.2 & 1 & 0 \\
HCM Control Delay & C & 15.8 & 14.1 \\
HCM LOS & & C & B \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \% & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 245 & 310 & 315 & 70 & 205 \\
LT Vol & 245 & 0 & 0 & 0 & 205 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 288 & 365 & 371 & 82 & 241 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.511 & 0.575 & 0.647 & 0.166 & 0.452 \\
Departure Headway (Hd) & 6.388 & 5.674 & 6.289 & 7.264 & 6.752 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 562 & 635 & 574 & 492 & 531 \\
Service Time & 4.153 & 3.438 & 4.344 & 5.038 & 4.526 \\
HCM Lane V/C Ratio & 0.512 & 0.575 & 0.646 & 0.167 & 0.454 \\
HCM Control Delay & 15.7 & 15.9 & 20.2 & 11.5 & 15 \\
HCM Lane LOS & C & C & C & B & B \\
HCM 95th-tile Q & 2.9 & 3.7 & 4.6 & 0.6 & 2.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 27.2 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 190 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 211 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.2 & & & 15.8 & & & 37.9 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 190 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 190 & 0 & 0 \\
Lane Flow Rate & 350 & 211 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.556 & 0.439 & 0.048 & 0.908 \\
Departure Headway (Hd) & 5.714 & 7.491 & 6.264 & 5.119 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 630 & 479 & 569 & 703 \\
Service Time & 3.776 & 5.257 & 4.029 & 3.172 \\
HCM Lane V/C Ratio & 0.556 & 0.441 & 0.049 & 0.909 \\
HCM Control Delay & 15.8 & 16 & 9.3 & 37.9 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.4 & 2.2 & 0.2 & 11.9
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & 7 & \(\leftarrow\) & & \(\rightarrow\) & \(\pm\) & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBT & EBR & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Group Flow (vph) & 78 & 464 & 47 & 16 & 21 & 1010 & 47 & 453 & 1068 & 31 \\
\hline v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.93 & 0.52 & 0.03 \\
\hline Control Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 23.1 & 0.5 & 21.8 & 0.1 & 36.7 & 46.6 & 0.3 & 53.0 & 10.1 & 0.2 \\
\hline Queue Length 50th (tt) & 27 & 0 & 16 & 0 & 9 & 224 & 0 & 187 & 107 & 0 \\
\hline Queue Length 95th (tt) & 60 & 0 & 41 & 0 & 30 & \#350 & 0 & \#354 & 207 & 2 \\
\hline Internal Link Dist (tt) & 92 & & 295 & & & 3161 & & & 432 & \\
\hline Turn Bay Length (tt) & & 50 & & 20 & 370 & & 60 & 510 & & 50 \\
\hline Base Capacity (vph) & 362 & 1553 & 381 & 485 & 99 & 1047 & 565 & 499 & 2065 & 955 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.22 & 0.30 & 0.12 & 0.03 & 0.21 & 0.96 & 0.08 & 0.91 & 0.52 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \％ & \(\rightarrow\) & W & 5 & & & & ＋ & 4 & \(\cdots\) & k & ＋ \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \({ }_{*}\) & 「＇ & & \(\uparrow\) & 「＇ & \({ }^{*}\) & 44 & 「 & \({ }^{7}\) & 中4 & 「 \\
\hline Volume（veh／h） & 50 & 25 & 445 & 25 & 20 & 15 & 20 & 970 & 45 & 435 & 1025 & 30 \\
\hline Number & 5 & 2 & 12 & 1 & 6 & 16 & 7 & 4 & 14 & 3 & 8 & 18 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 52 & 26 & 0 & 26 & 21 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Adj No．of Lanes & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 306 & 136 & 379 & 271 & 196 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline Arrive On Green & 0.24 & 0.24 & 0.00 & 0.24 & 0.24 & 0.24 & 0.02 & 0.30 & 0.00 & 0.28 & 0.56 & 0.00 \\
\hline Sat Flow，veh／h & 900 & 557 & 1553 & 780 & 804 & 1553 & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 \\
\hline Grp Volume（v），veh／h & 78 & 0 & 0 & 47 & 0 & 16 & 21 & 1010 & 0 & 453 & 1068 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1457 & 0 & 1553 & 1584 & 0 & 1553 & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 \\
\hline Q Serve（g＿s），s & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 3.1 & 0.0 & 0.0 & 1.4 & 0.0 & 0.5 & 0.8 & 20.0 & 0.0 & 17.6 & 13.5 & 0.0 \\
\hline Prop In Lane & 0.67 & & 1.00 & 0.55 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 33 & 1046 & 468 & 491 & 1960 & 877 \\
\hline V／C Ratio（X） & 0.18 & 0.00 & 0.00 & 0.10 & 0.00 & 0.04 & 0.63 & 0.97 & 0.00 & 0.92 & 0.54 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 442 & 0 & 379 & 467 & 0 & 379 & 100 & 1046 & 468 & 499 & 1960 & 877 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 21.1 & 0.0 & 0.0 & 20.4 & 0.0 & 20.1 & 33.9 & 24.0 & 0.0 & 24.3 & 9.5 & 0.0 \\
\hline Incr Delay（d2），s／veh & 0.2 & 0.0 & 0.0 & 0.4 & 0.0 & 0.2 & 17.9 & 19.9 & 0.0 & 22.6 & 0.3 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／In & 1.2 & 0.0 & 0.0 & 0.8 & 0.0 & 0.3 & 0.6 & 12.4 & 0.0 & 11.5 & 6.5 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 21.2 & 0.0 & 0.0 & 20.9 & 0.0 & 20.3 & 51.8 & 43.9 & 0.0 & 46.8 & 9.9 & 0.0 \\
\hline LnGrp LOS & C & & & C & & C & D & D & & D & A & \\
\hline Approach Vol，veh／h & & 78 & & & 63 & & & 1031 & & & 1521 & \\
\hline Approach Delay，s／veh & & 21.2 & & & 20.7 & & & 44.0 & & & 20.9 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），s & & 21.0 & 23.7 & 25.0 & & 21.0 & 5.3 & 43.3 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 20.0 & 21.0 & & 17.0 & 4.0 & 37.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 5.1 & 19.6 & 22.0 & & 3.4 & 2.8 & 15.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.5 & 0.1 & 0.0 & & 0.5 & 0.0 & 13.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 29.7 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor1 & \\
\hline Conflicting Flow All & 0 & 0 & 505 & 0 & 1100 & 444 \\
\hline Stage 1 & - & - & - & - & 444 & \\
\hline Stage 2 & - & - & - & - & 656 & \\
\hline Critical Hdwy & - & & 4.14 & - & 6.44 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.44 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.44 & \\
\hline Follow-up Hdwy & - & - & 2.236 & - & 3.536 & 3.336 \\
\hline Pot Cap-1 Maneuver & - & - & 1049 & - & 233 & 610 \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & & - & - & 513 & \\
\hline Platoon blocked, \% & - & - & & - & & \\
\hline Mov Cap-1 Maneuver & - & - & 1049 & - & 195 & 610 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 195 & \\
\hline Stage 1 & - & - & - & - & 642 & \\
\hline Stage 2 & - & - & - & - & 429 & \\
\hline
\end{tabular}
\begin{tabular}{lrcc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 2.3 & 65.1 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrr} 
Minor Lane/Major Mvmt & NBLn1 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 317 & - & - & 1049 & - \\
HCM Lane V/C Ratio & 0.899 & - & - & 0.128 & - \\
HCM Control Delay (s) & 65.1 & - & - & 8.9 & 0 \\
HCM Lane LOS & F & - & - & A & A \\
HCM 95th \%tile Q(veh) & 8.5 & - & - & 0.4 & -
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline & & & & & \\
\cline { 3 - 7 } & & & & & & \\
& EBT & EBR & WBL & WBT & NEL & NER \\
\hline Lane Group & 973 & 49 & 98 & 1011 & 82 & 65 \\
\hline Lane Group Flow (vph) & 0.36 & 0.04 & 0.25 & 0.38 & 0.26 & 0.19 \\
v/c Ratio & 4.0 & 1.7 & 6.2 & 4.0 & 15.3 & 5.8 \\
Control Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Queue Delay & 4.0 & 1.7 & 6.2 & 4.0 & 15.3 & 5.8 \\
Total Delay & 45 & 0 & 8 & 48 & 18 & 0 \\
Queue Length 50th (ft) & 84 & 8 & 31 & 89 & 36 & 18 \\
Queue Length 95th (ft) & 957 & & & 1757 & 1151 & \\
Internal Link Dist (ft) & & 260 & 440 & & & 50 \\
Turn Bay Length (ft) & 2678 & 1210 & 399 & 2678 & 710 & 674 \\
Base Capacity (vph) & 0 & 0 & 0 & 0 & 0 & 0 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0.36 & 0.04 & 0.25 & 0.38 & 0.12 & 0.10 \\
Reduced v/c Ratio & & & & &
\end{tabular}

\footnotetext{
Intersection Summary
}


Two Way Analysis cannot be performed on Signalized Intersection.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & \multicolumn{2}{|l|}{Major2} & \multicolumn{2}{|l|}{Minor2} \\
\hline Conflicting Flow All & 228 & 0 & - & 0 & 487 & 188 \\
\hline Stage 1 & - & - & - & - & 188 & \\
\hline Stage 2 & - & - & - & - & 299 & \\
\hline Critical Hdwy & 4.12 & - & - & - & 6.42 & 6.22 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.42 & \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.42 & \\
\hline Follow-up Hdwy & 2.218 & - & - & - & 3.518 & 3.318 \\
\hline Pot Cap-1 Maneuver & 1340 & - & - & - & 540 & 854 \\
\hline Stage 1 & - & - & - & - & 844 & \\
\hline Stage 2 & - & - & - & - & 752 & \\
\hline Platoon blocked, \% & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & 1340 & - & - & - & 509 & 854 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 509 & \\
\hline Stage 1 & - & - & - & - & 844 & \\
\hline Stage 2 & - & - & - & - & 708 & \\
\hline
\end{tabular}
\begin{tabular}{llrr} 
Approach & SE & NW & SW \\
\hline HCM Control Delay, S & 2.4 & 0 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & NWT & NWR & SEL & SET & SWLn1 \\
\hline Capacity (veh/h) & - & - & 1340 & - & 669 \\
HCM Lane V/C Ratio & - & - & 0.053 & - & 0.219 \\
HCM Control Delay (s) & - & - & 7.8 & 0 & 11.9 \\
HCM Lane LOS & - & - & A & A & B \\
HCM 95th \%tile Q(veh) & - & - & 0.2 & - & 0.8
\end{tabular}

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & * & \(\rightarrow\) & \(\checkmark\) & & 4 & 9 & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & WBL & WBT & WBR & NBT & SBL & SBT \\
\hline Lane Group Flow (vph) & 10 & 906 & 68 & 927 & 36 & 130 & 31 & 47 \\
\hline v/c Ratio & 0.06 & 0.79 & 0.30 & 0.64 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline Control Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Length 50th (ft) & 3 & 125 & 19 & 83 & 0 & 14 & 6 & 5 \\
\hline Queue Length 95th (ft) & 14 & \#216 & 48 & 178 & 0 & 44 & 21 & 22 \\
\hline Internal Link Dist (ft) & & 2069 & & 2822 & & 280 & & 312 \\
\hline Turn Bay Length (ft) & 260 & & 260 & & 290 & & 30 & \\
\hline Base Capacity (vph) & 156 & 1249 & 234 & 1625 & 784 & 586 & 490 & 626 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.06 & 0.73 & 0.29 & 0.57 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline \multicolumn{9}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & & & & 4 & 4 & \(\dagger\) & \(p\) & ( & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{1}\) & 44 & & \({ }^{7}\) & 44 & 「 & & \& & & \({ }^{7}\) & \(\hat{\beta}\) & \\
\hline Volume (veh/h) & 10 & 870 & 0 & 65 & 890 & 35 & 50 & 15 & 60 & 30 & 25 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1810 & 1810 & 0 & 1810 & 1810 & 1810 & 1900 & 1810 & 1900 & 1810 & 1810 & 1900 \\
\hline Adj Flow Rate, veh/h & 10 & 906 & 0 & 68 & 927 & 36 & 52 & 16 & 62 & 31 & 26 & 21 \\
\hline Adj No. of Lanes & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 5 & 5 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Cap, veh/h & 18 & 1159 & 0 & 87 & 1297 & 580 & 277 & 108 & 251 & 534 & 325 & 262 \\
\hline Arrive On Green & 0.01 & 0.34 & 0.00 & 0.05 & 0.38 & 0.38 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
\hline Sat Flow, veh/h & 1723 & 3529 & 0 & 1723 & 3438 & 1538 & 478 & 308 & 717 & 1278 & 928 & 749 \\
\hline Grp Volume(v), veh/h & 10 & 906 & 0 & 68 & 927 & 36 & 130 & 0 & 0 & 31 & 0 & 47 \\
\hline Grp Sat Flow(s),veh/h/ln & 1723 & 1719 & 0 & 1723 & 1719 & 1538 & 1503 & 0 & 0 & 1278 & 0 & 1677 \\
\hline Q Serve(g_s), s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 & 0.9 \\
\hline Cycle Q Clear(g_c), s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 2.5 & 0.0 & 0.0 & 3.3 & 0.0 & 0.9 \\
\hline Prop In Lane & 1.00 & & 0.00 & 1.00 & & 1.00 & 0.40 & & 0.48 & 1.00 & & 0.45 \\
\hline Lane Grp Cap(c), veh/h & 18 & 1159 & 0 & 87 & 1297 & 580 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline V/C Ratio(X) & 0.56 & 0.78 & 0.00 & 0.78 & 0.71 & 0.06 & 0.20 & 0.00 & 0.00 & 0.06 & 0.00 & 0.08 \\
\hline Avail Cap(c_a), veh/h & 151 & 1203 & 0 & 226 & 1353 & 605 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 22.5 & 13.6 & 0.0 & 21.5 & 12.1 & 9.1 & 10.5 & 0.0 & 0.0 & 11.7 & 0.0 & 9.9 \\
\hline Incr Delay (d2), s/veh & 24.2 & 3.3 & 0.0 & 13.9 & 1.7 & 0.0 & 0.7 & 0.0 & 0.0 & 0.2 & 0.0 & 0.3 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/In & 0.2 & 5.6 & 0.0 & 1.2 & 5.2 & 0.3 & 1.3 & 0.0 & 0.0 & 0.3 & 0.0 & 0.4 \\
\hline LnGrp Delay(d),s/veh & 46.7 & 16.9 & 0.0 & 35.3 & 13.9 & 9.1 & 11.2 & 0.0 & 0.0 & 11.9 & 0.0 & 10.2 \\
\hline LnGrp LOS & D & B & & D & B & A & B & & & B & & B \\
\hline Approach Vol, veh/h & & 916 & & & 1031 & & & 130 & & & 78 & \\
\hline Approach Delay, s/veh & & 17.3 & & & 15.1 & & & 11.2 & & & 10.9 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), s & & 20.0 & 6.3 & 19.4 & & 20.0 & 4.5 & 21.3 & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 16.0 & 6.0 & 16.0 & & 16.0 & 4.0 & 18.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 4.5 & 3.8 & 12.8 & & 5.3 & 2.3 & 12.5 & & & & \\
\hline Green Ext Time (p_c), s & & 0.8 & 0.0 & 2.6 & & 0.8 & 0.0 & 4.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Int Delay, s/veh & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR \\
\hline Vol, veh/h & 2 & 80 & 30 & 75 & 85 & 15 & 25 & 2 & 25 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 \\
\hline Heavy Vehicles, \% & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Mvmt Flow & 2 & 83 & 31 & 78 & 89 & 16 & 26 & 2 & 26 \\
\hline Major/Minor & Major1 & & & Major2 & & & Minor1 & & \\
\hline Conflicting Flow All & 104 & 0 & 0 & 115 & 0 & 0 & 357 & 363 & 99 \\
\hline Stage 1 & - & - & - & - & - & - & 103 & 103 & \\
\hline Stage 2 & - & - & - & - & - & - & 254 & 260 & \\
\hline Critical Hdwy & 4.14 & - & - & 4.14 & - & - & 7.14 & 6.54 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & - & - & 6.14 & 5.54 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & - & - & 6.14 & 5.54 & \\
\hline Follow-up Hdwy & 2.236 & - & - & 2.236 & - & - & 3.536 & 4.036 & 3.336 \\
\hline Pot Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 595 & 561 & 951 \\
\hline Stage 1 & - & - & - & - & - & - & 898 & 806 & - \\
\hline Stage 2 & - & - & - & - & - & - & 746 & 689 & - \\
\hline Platoon blocked, \% & & - & - & & - & - & & & \\
\hline Mov Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 567 & 528 & 951 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & - & - & 567 & 528 & - \\
\hline Stage 1 & - & - & - & - & - & - & 897 & 805 & \\
\hline Stage 2 & - & - & - & - & - & - & 702 & 650 & \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 3.6 & & & & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Vol, veh/h & 35 & 105 & 145 & 105 & 60 & 80 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & - & - & - & - & 0 & - \\
\hline Veh in Median Storage, \# & - & 0 & 0 & - & 0 & - \\
\hline Grade, \% & - & 0 & 0 & - & 0 & - \\
\hline Peak Hour Factor & 90 & 90 & 90 & 90 & 90 & 90 \\
\hline Heavy Vehicles, \% & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline Mvmt Flow & 39 & 117 & 161 & 117 & 67 & 89 \\
\hline \multicolumn{7}{|l|}{} \\
\hline Major/Minor & Major1 & & Major2 & & Minor2 & \\
\hline Conflicting Flow All & 278 & 0 & - & 0 & 413 & 219 \\
\hline Stage 1 & - & - & - & - & 219 & - \\
\hline Stage 2 & - & - & - & - & 194 & - \\
\hline Critical Hdwy & 4.13 & - & - & - & 6.43 & 6.23 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.43 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & 5.43 & - \\
\hline Follow-up Hdwy & 2.227 & - & - & - & 3.527 & 3.327 \\
\hline Pot Cap-1 Maneuver & 1279 & - & - & - & 594 & 818 \\
\hline Stage 1 & - & - & - & - & 815 & - \\
\hline Stage 2 & - & - & - & - & 836 & - \\
\hline Platoon blocked, \% & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & 1279 & - & - & - & 574 & 818 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 574 & - \\
\hline Stage 1 & - & - & - & - & 815 & - \\
\hline Stage 2 & - & - & - & - & 808 & - \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2 & 0 & 11.7 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1279 & - & - & - & 692 \\
HCM Lane V/C Ratio & 0.03 & - & - & - & 0.225 \\
HCM Control Delay (s) & 7.9 & 0 & - & - & 11.7 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 0.9
\end{tabular}

\begin{tabular}{lrcr} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.4 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 513 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.195 & 0.104 & - & - & 0.033 & - \\
\hline HCM Control Delay (s) & 13.7 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & & \(\geqslant\) & 7 & & 4 & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 952 & 112 & 202 & 877 & 234 & 32 \\
\hline v/c Ratio & 0.09 & 0.96 & 0.20 & 0.69 & 0.51 & 0.46 & 0.07 \\
\hline Control Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Length 50th (tt) & 4 & 160 & 0 & 62 & 82 & 32 & 6 \\
\hline Queue Length 95th (tt) & 16 & \#274 & 12 & \#141 & 171 & 84 & 22 \\
\hline Internal Link Dist (t) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (tt) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 123 & 991 & 569 & 309 & 1725 & 512 & 465 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.96 & 0.20 & 0.65 & 0.51 & 0.46 & 0.07 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & 7 & & 4 &  & \(\dagger\) & 7 & \[
t
\] & \(\ddagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{1}\) & 中4 & 「 & \({ }^{1}\) & 中 \({ }^{\text {P }}\) & & & \＆ & & & \＆ & \\
\hline Volume（veh／h） & 10 & 895 & 105 & 190 & 820 & 5 & 95 & 10 & 115 & 15 & 10 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate，veh／h & 11 & 952 & 0 & 202 & 872 & 5 & 101 & 11 & 122 & 16 & 11 & 5 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh，\％ & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap，veh／h & 19 & 1023 & 458 & 249 & 1511 & 9 & 266 & 57 & 246 & 298 & 189 & 71 \\
\hline Arrive On Green & 0.01 & 0.30 & 0.00 & 0.15 & 0.44 & 0.44 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 \\
\hline Sat Flow，veh／h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 524 & 177 & 763 & 607 & 588 & 221 \\
\hline Grp Volume（v），veh／h & 11 & 952 & 0 & 202 & 428 & 449 & 234 & 0 & 0 & 32 & 0 & 0 \\
\hline Grp Sat Flow（s），veh／h／ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1464 & 0 & 0 & 1416 & 0 & 0 \\
\hline Q Serve（g＿s），s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 3.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear（g＿c），s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 6.6 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.43 & & 0.52 & 0.50 & & 0.16 \\
\hline Lane Grp Cap（c），veh／h & 19 & 1023 & 458 & 249 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline V／C Ratio（X） & 0.58 & 0.93 & 0.00 & 0.81 & 0.58 & 0.58 & 0.41 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Avail Cap（c＿a），veh／h & 128 & 1023 & 458 & 320 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay（d），s／veh & 26.0 & 17.9 & 0.0 & 21.8 & 11.1 & 11.1 & 14.3 & 0.0 & 0.0 & 12.4 & 0.0 & 0.0 \\
\hline Incr Delay（d2），s／veh & 24.5 & 14.4 & 0.0 & 11.5 & 1.1 & 1.1 & 2.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.3 & 8.7 & 0.0 & 3.6 & 4.9 & 5.1 & 3.1 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline LnGrp Delay（d），s／veh & 50.5 & 32.3 & 0.0 & 33.2 & 12.2 & 12.2 & 16.5 & 0.0 & 0.0 & 12.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & C & B & B & B & & & B & & \\
\hline Approach Vol，veh／h & & 963 & & & 1079 & & & 234 & & & 32 & \\
\hline Approach Delay，s／veh & & 32.5 & & & 16.1 & & & 16.5 & & & 12.6 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R \mathrm{c}\) ），\(s\) & & 21.0 & 11.8 & 20.0 & & 21.0 & 4.6 & 27.2 & & & & \\
\hline Change Period（Y＋Rc），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 17.0 & 10.0 & 16.0 & & 17.0 & 4.0 & 22.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 8.6 & 8.1 & 16.5 & & 2.7 & 2.3 & 12.1 & & & & \\
\hline Green Ext Time（p＿c），s & & 1.0 & 0.1 & 0.0 & & 1.3 & 0.0 & 6.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 22.9 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.9 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 255 & 310 & 0 & 70 & 210 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 300 & 365 & 0 & 82 & 247 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline Approach & & WB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 2 & & & 2 & \\
\hline Conflicting Approach Left & & NB & & & & & & WB & \\
\hline Conflicting Lanes Left & & 2 & & & 0 & & & 1 & \\
\hline Conflicting Approach Right & & SB & & & WB & & & & \\
\hline Conflicting Lanes Right & & 2 & & & 1 & & & 0 & \\
\hline HCM Control Delay & & 20.5 & & & 16.2 & & & 14.4 & \\
\hline HCM LOS & & C & & & C & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 255 & 310 & 315 & 70 & 210 \\
LT Vol & 255 & 0 & 0 & 0 & 210 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 300 & 365 & 371 & 82 & 247 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.534 & 0.577 & 0.651 & 0.167 & 0.465 \\
Departure Headway (Hd) & 6.407 & 5.693 & 6.32 & 7.288 & 6.776 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 561 & 631 & 571 & 490 & 529 \\
Service Time & 4.176 & 3.461 & 4.377 & 5.066 & 4.554 \\
HCM Lane V/C Ratio & 0.535 & 0.578 & 0.65 & 0.167 & 0.467 \\
HCM Control Delay & 16.4 & 16 & 20.5 & 11.5 & 15.4 \\
HCM Lane LOS & C & C & C & B & C \\
HCM 95th-tile Q & 3.1 & 3.7 & 4.7 & 0.6 & 2.4
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 28.3 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 200 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 222 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.9 & & & 16 & & & 39.8 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 200 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 200 & 0 & 0 \\
Lane Flow Rate & 350 & 222 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.561 & 0.464 & 0.048 & 0.918 \\
Departure Headway (Hd) & 5.774 & 7.509 & 6.282 & 5.171 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 623 & 478 & 567 & 696 \\
Service Time & 3.843 & 5.279 & 4.052 & 3.23 \\
HCM Lane V/C Ratio & 0.562 & 0.464 & 0.049 & 0.918 \\
HCM Control Delay & 16 & 16.7 & 9.4 & 39.8 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.5 & 2.4 & 0.2 & 12.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\pm\) & \(\lambda\) & n & \(k\) & \(\zeta\) & \(\nearrow\) & T & \(\grave{ }\) & * \\
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NET & NER & SWT & SWR \\
\hline Lane Group Flow (vph) & 21 & 1010 & 47 & 453 & 1068 & 31 & 78 & 464 & 47 & 16 \\
\hline v/c Ratio & 0.13 & 0.87 & 0.08 & 0.78 & 0.45 & 0.03 & 0.34 & 0.30 & 0.20 & 0.04 \\
\hline Control Delay & 30.6 & 33.4 & 0.2 & 31.9 & 6.5 & 0.2 & 31.3 & 0.5 & 28.2 & 0.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 30.6 & 33.4 & 0.2 & 31.9 & 6.5 & 0.2 & 31.3 & 0.5 & 28.2 & 0.2 \\
\hline Queue Length 50th (t) & 9 & 207 & 0 & 167 & 62 & 0 & 32 & 0 & 19 & 0 \\
\hline Queue Length 95th (tt) & 28 & \#350 & 0 & \#305 & 204 & 2 & 66 & 0 & 44 & 0 \\
\hline Internal Link Dist (tt) & & 2721 & & & 861 & & 307 & & 291 & \\
\hline Turn Bay Length (tt) & 370 & & 60 & 510 & & 50 & & & & 20 \\
\hline Base Capacity (vph) & 159 & 1159 & 611 & 586 & 2396 & 1096 & 342 & 1553 & 355 & 483 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.13 & 0.87 & 0.08 & 0.77 & 0.45 & 0.03 & 0.23 & 0.30 & 0.13 & 0.03 \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「＇ & \({ }^{7}\) & 44 & 「＇ & & \(\uparrow\) & 「 & & \(\uparrow\) & 「 \\
\hline Volume（veh／h） & 20 & 970 & 45 & 435 & 1025 & 30 & 50 & 25 & 445 & 25 & 20 & 15 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1827 & 1827 & 1827 & 1827 & 1827 & 1827 & 1900 & 1827 & 1827 & 1900 & 1827 & 1827 \\
\hline Adj Flow Rate，veh／h & 21 & 1010 & 0 & 453 & 1068 & 0 & 52 & 26 & 0 & 26 & 21 & 16 \\
\hline Adj No．of Lanes & 1 & 2 & 1 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Cap，veh／h & 35 & 1302 & 582 & 516 & 2262 & 1012 & 191 & 63 & 162 & 175 & 106 & 162 \\
\hline Arrive On Green & 0.02 & 0.38 & 0.00 & 0.30 & 0.65 & 0.00 & 0.10 & 0.10 & 0.00 & 0.10 & 0.10 & 0.10 \\
\hline Sat Flow，veh／h & 1740 & 3471 & 1553 & 1740 & 3471 & 1553 & 758 & 603 & 1553 & 677 & 1019 & 1553 \\
\hline Grp Volume（v），veh／h & 21 & 1010 & 0 & 453 & 1068 & 0 & 78 & 0 & 0 & 47 & 0 & 16 \\
\hline Grp Sat Flow（s），veh／h／ln & 1740 & 1736 & 1553 & 1740 & 1736 & 1553 & 1361 & 0 & 1553 & 1696 & 0 & 1553 \\
\hline Q Serve（g＿s），s & 0.6 & 13.7 & 0.0 & 13.3 & 8.3 & 0.0 & 1.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \\
\hline Cycle Q Clear（g＿c），s & 0.6 & 13.7 & 0.0 & 13.3 & 8.3 & 0.0 & 3.1 & 0.0 & 0.0 & 1.3 & 0.0 & 0.5 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 1.00 & 0.67 & & 1.00 & 0.55 & & 1.00 \\
\hline Lane Grp Cap（c），veh／h & 35 & 1302 & 582 & 516 & 2262 & 1012 & 254 & 0 & 162 & 281 & 0 & 162 \\
\hline V／C Ratio（X） & 0.60 & 0.78 & 0.00 & 0.88 & 0.47 & 0.00 & 0.31 & 0.00 & 0.00 & 0.17 & 0.00 & 0.10 \\
\hline Avail Cap（c＿a），veh／h & 130 & 1360 & 608 & 649 & 2396 & 1072 & 567 & 0 & 493 & 607 & 0 & 493 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.56 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 26.1 & 14.8 & 0.0 & 17.9 & 4.7 & 0.0 & 22.9 & 0.0 & 0.0 & 22.1 & 0.0 & 21.7 \\
\hline Incr Delay（d2），s／veh & 15.5 & 2.8 & 0.0 & 11.0 & 0.2 & 0.0 & 1.7 & 0.0 & 0.0 & 0.3 & 0.0 & 0.3 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.5 & 7.0 & 0.0 & 7.9 & 3.9 & 0.0 & 1.2 & 0.0 & 0.0 & 0.7 & 0.0 & 0.2 \\
\hline LnGrp Delay（d），s／veh & 41.6 & 17.5 & 0.0 & 28.9 & 4.9 & 0.0 & 24.7 & 0.0 & 0.0 & 22.3 & 0.0 & 22.0 \\
\hline LnGrp LOS & D & B & & C & A & & C & & & C & & C \\
\hline Approach Vol，veh／h & & 1031 & & & 1521 & & & 78 & & & 63 & \\
\hline Approach Delay，s／veh & & 18.0 & & & 12.0 & & & 24.7 & & & 22.2 & \\
\hline Approach LOS & & B & & & B & & & C & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr} 
Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Assigned Phs & & 2 & 3 & 4 & 6 & 7 & 8 \\
Phs Duration（G＋Y＋Rc），s & 26.0 & 19.9 & 24.1 & & 26.0 & 5.1 & 38.9 \\
Change Period（Y＋Rc），s & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
Max Green Setting（Gmax），s & 17.0 & 20.0 & 21.0 & 17.0 & 4.0 & 37.0 \\
Max Q Clear Time（g＿c＋11），s & 5.1 & 15.3 & 15.7 & 3.3 & 2.6 & 10.3 \\
Green Ext Time（p＿c），s & 0.5 & 0.6 & 4.4 & 0.5 & 0.0 & 15.6
\end{tabular}
\begin{tabular}{lr} 
Intersection Summary & \\
\hline HCM 2010 Ctrl Delay & 14.9 \\
HCM 2010 LOS & B
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\rangle\) & & \(\leftarrow\) & - & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & WBT & SBL & SBR \\
\hline Lane Group Flow (vph) & 360 & 124 & 285 & 134 & 387 \\
\hline v/c Ratio & 0.76 & 0.10 & 0.43 & 0.45 & 0.66 \\
\hline Control Delay & 32.7 & 4.1 & 13.1 & 26.1 & 8.6 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 32.7 & 4.1 & 13.1 & 26.1 & 8.6 \\
\hline Queue Length 50th (tt) & 114 & 11 & 47 & 44 & 0 \\
\hline Queue Length 95th (tt) & \#239 & 34 & 118 & 79 & 56 \\
\hline Internal Link Dist (t) & & 1718 & 290 & 307 & \\
\hline Turn Bay Length (t) & 150 & & & 150 & \\
\hline Base Capacity (vph) & 497 & 1269 & 669 & 462 & 697 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.72 & 0.10 & 0.43 & 0.29 & 0.56 \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.}} \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\longleftarrow\) & & & \(\downarrow\) & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR & & \\
\hline Lane Configurations & \({ }^{7}\) & \(\uparrow\) & \(\uparrow\) & & \% & 「 & & \\
\hline Volume (veh/h) & 335 & 115 & 115 & 150 & 125 & 360 & & \\
\hline Number & 5 & 2 & 6 & 16 & 7 & 14 & & \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & & 1.00 & 1.00 & 1.00 & & \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Adj Sat Flow, veh/h/ln & 1827 & 1827 & 1827 & 1900 & 1827 & 1827 & & \\
\hline Adj Flow Rate, veh/h & 360 & 124 & 124 & 161 & 134 & 387 & & \\
\hline Adj No. of Lanes & 1 & 1 & 1 & 0 & 1 & 1 & & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & & \\
\hline Percent Heavy Veh, \% & 4 & 4 & 4 & 4 & 4 & 4 & & \\
\hline Cap, veh/h & 429 & 1010 & 163 & 212 & 498 & 445 & & \\
\hline Arrive On Green & 0.25 & 0.55 & 0.23 & 0.23 & 0.29 & 0.29 & & \\
\hline Sat Flow, veh/h & 1740 & 1827 & 723 & 938 & 1740 & 1553 & & \\
\hline Grp Volume(v), veh/h & 360 & 124 & 0 & 285 & 134 & 387 & & \\
\hline Grp Sat Flow(s),veh/h/ln & 1740 & 1827 & 0 & 1661 & 1740 & 1553 & & \\
\hline Q Serve(g_s), s & 9.8 & 1.6 & 0.0 & 8.0 & 3.0 & 11.8 & & \\
\hline Cycle Q Clear(g_c), s & 9.8 & 1.6 & 0.0 & 8.0 & 3.0 & 11.8 & & \\
\hline Prop In Lane & 1.00 & & & 0.56 & 1.00 & 1.00 & & \\
\hline Lane Grp Cap(c), veh/h & 429 & 1010 & 0 & 375 & 498 & 445 & & \\
\hline V/C Ratio(X) & 0.84 & 0.12 & 0.00 & 0.76 & 0.27 & 0.87 & & \\
\hline Avail Cap(c_a), veh/h & 560 & 1323 & 0 & 535 & 560 & 500 & & \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & \\
\hline Upstream Filter(1) & 1.00 & 1.00 & 0.00 & 1.00 & 0.69 & 0.69 & & \\
\hline Uniform Delay (d), s/veh & 17.8 & 5.3 & 0.0 & 18.0 & 13.7 & 16.9 & & \\
\hline Incr Delay (d2), s/veh & 8.7 & 0.1 & 0.0 & 13.5 & 0.2 & 10.2 & & \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & \\
\hline \%ile BackOfQ(50\%),veh/ln & 5.7 & 0.8 & 0.0 & 5.0 & 1.4 & 10.3 & & \\
\hline LnGrp Delay(d),s/veh & 26.5 & 5.4 & 0.0 & 31.5 & 13.9 & 27.1 & & \\
\hline LnGrp LOS & C & A & & C & B & C & & \\
\hline Approach Vol, veh/h & & 484 & 285 & & 521 & & & \\
\hline Approach Delay, s/veh & & 21.1 & 31.5 & & 23.7 & & & \\
\hline Approach LOS & & C & C & & C & & & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Assigned Phs & & 2 & & 4 & 5 & 6 & & \\
\hline Phs Duration ( \(G+Y+\) Rc), \(s\) & & 31.5 & & 18.2 & 16.3 & 15.2 & & \\
\hline Change Period ( \(Y+R \mathrm{Rc}\), s & & 4.0 & & 4.0 & 4.0 & 4.0 & & \\
\hline Max Green Setting (Gmax), s & & 36.0 & & 16.0 & 16.0 & 16.0 & & \\
\hline Max Q Clear Time ( \(\left.\mathrm{g}_{\text {c }} \mathrm{c}+11\right)\), s & & 3.6 & & 13.8 & 11.8 & 10.0 & & \\
\hline Green Ext Time (p_c), s & & 2.7 & & 0.5 & 0.5 & 1.3 & & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 2010 Ctrl Delay
HCM 2010 LOS}} & \multicolumn{4}{|l|}{24.4} & & \\
\hline & & & C & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & \[
\nleftarrow
\] & 4 & 4 & & \(\dagger\) \\
\hline Lane Group & EBL & EBT & WBL & WBT & WBR & NBT & SBL & SBT \\
\hline Lane Group Flow (vph) & 10 & 906 & 68 & 927 & 36 & 130 & 31 & 47 \\
\hline v/c Ratio & 0.06 & 0.79 & 0.30 & 0.64 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline Control Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Length 50th (ft) & 3 & 125 & 19 & 83 & 0 & 14 & 6 & 5 \\
\hline Queue Length 95th (ft) & 14 & \#216 & 48 & 178 & 0 & 44 & 21 & 22 \\
\hline Internal Link Dist (ft) & & 2069 & & 2822 & & 280 & & 312 \\
\hline Turn Bay Length (ft) & 260 & & 260 & & 290 & & 30 & \\
\hline Base Capacity (vph) & 156 & 1249 & 234 & 1625 & 784 & 586 & 490 & 626 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.06 & 0.73 & 0.29 & 0.57 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline
\end{tabular}

Intersection Summary
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & \(\checkmark\) & 7 & & 4 & \[
4
\] & \(\dagger\) & \(p\) & & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 中4 & & \({ }^{1}\) & 中4 & 「 & & \＆ & & \({ }^{*}\) & \(\uparrow\) & \\
\hline Volume（veh／h） & 10 & 870 & 0 & 65 & 890 & 35 & 50 & 15 & 60 & 30 & 25 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q（Qb），veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow，veh／h／ln & 1810 & 1810 & 0 & 1810 & 1810 & 1810 & 1900 & 1810 & 1900 & 1810 & 1810 & 1900 \\
\hline Adj Flow Rate，veh／h & 10 & 906 & 0 & 68 & 927 & 36 & 52 & 16 & 62 & 31 & 26 & 21 \\
\hline Adj No．of Lanes & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh，\％ & 5 & 5 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Cap，veh／h & 18 & 1159 & 0 & 87 & 1297 & 580 & 277 & 108 & 251 & 534 & 325 & 262 \\
\hline Arrive On Green & 0.01 & 0.34 & 0.00 & 0.05 & 0.38 & 0.38 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
\hline Sat Flow，veh／h & 1723 & 3529 & 0 & 1723 & 3438 & 1538 & 478 & 308 & 717 & 1278 & 928 & 749 \\
\hline Grp Volume（v），veh／h & 10 & 906 & 0 & 68 & 927 & 36 & 130 & 0 & 0 & 31 & 0 & 47 \\
\hline Grp Sat Flow（s），veh／h／ln & 1723 & 1719 & 0 & 1723 & 1719 & 1538 & 1503 & 0 & 0 & 1278 & 0 & 1677 \\
\hline Q Serve（g＿s），s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 & 0.9 \\
\hline Cycle Q Clear（g＿c），s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 2.5 & 0.0 & 0.0 & 3.3 & 0.0 & 0.9 \\
\hline Prop In Lane & 1.00 & & 0.00 & 1.00 & & 1.00 & 0.40 & & 0.48 & 1.00 & & 0.45 \\
\hline Lane Grp Cap（c），veh／h & 18 & 1159 & 0 & 87 & 1297 & 580 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline V／C Ratio（X） & 0.56 & 0.78 & 0.00 & 0.78 & 0.71 & 0.06 & 0.20 & 0.00 & 0.00 & 0.06 & 0.00 & 0.08 \\
\hline Avail Cap（c＿a），veh／h & 151 & 1203 & 0 & 226 & 1353 & 605 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（I） & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & 22.5 & 13.6 & 0.0 & 21.5 & 12.1 & 9.1 & 10.5 & 0.0 & 0.0 & 11.7 & 0.0 & 9.9 \\
\hline Incr Delay（d2），s／veh & 24.2 & 3.3 & 0.0 & 13.9 & 1.7 & 0.0 & 0.7 & 0.0 & 0.0 & 0.2 & 0.0 & 0.3 \\
\hline Initial Q Delay（d3），s／veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & 0.2 & 5.6 & 0.0 & 1.2 & 5.2 & 0.3 & 1.3 & 0.0 & 0.0 & 0.3 & 0.0 & 0.4 \\
\hline LnGrp Delay（d），s／veh & 46.7 & 16.9 & 0.0 & 35.3 & 13.9 & 9.1 & 11.2 & 0.0 & 0.0 & 11.9 & 0.0 & 10.2 \\
\hline LnGrp LOS & D & B & & D & B & A & B & & & B & & B \\
\hline Approach Vol，veh／h & & 916 & & & 1031 & & & 130 & & & 78 & \\
\hline Approach Delay，s／veh & & 17.3 & & & 15.1 & & & 11.2 & & & 10.9 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration（ \(G+Y+R c\) ），\(s\) & & 20.0 & 6.3 & 19.4 & & 20.0 & 4.5 & 21.3 & & & & \\
\hline Change Period（ \(\mathrm{Y}+\mathrm{Rc}\) ），s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting（Gmax），s & & 16.0 & 6.0 & 16.0 & & 16.0 & 4.0 & 18.0 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 4.5 & 3.8 & 12.8 & & 5.3 & 2.3 & 12.5 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.8 & 0.0 & 2.6 & & 0.8 & 0.0 & 4.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Int Delay, s/veh & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR \\
\hline Vol, veh/h & 2 & 80 & 30 & 75 & 85 & 15 & 25 & 2 & 25 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 \\
\hline Heavy Vehicles, \% & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Mvmt Flow & 2 & 83 & 31 & 78 & 89 & 16 & 26 & 2 & 26 \\
\hline Major/Minor & Major1 & & & Major2 & & & Minor1 & & \\
\hline Conflicting Flow All & 104 & 0 & 0 & 115 & 0 & 0 & 357 & 363 & 99 \\
\hline Stage 1 & - & - & - & - & - & - & 103 & 103 & \\
\hline Stage 2 & - & - & - & - & - & - & 254 & 260 & \\
\hline Critical Hdwy & 4.14 & - & - & 4.14 & - & - & 7.14 & 6.54 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & - & - & 6.14 & 5.54 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & - & - & 6.14 & 5.54 & \\
\hline Follow-up Hdwy & 2.236 & - & - & 2.236 & - & - & 3.536 & 4.036 & 3.336 \\
\hline Pot Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 595 & 561 & 951 \\
\hline Stage 1 & - & - & - & - & - & - & 898 & 806 & - \\
\hline Stage 2 & - & - & - & - & - & - & 746 & 689 & - \\
\hline Platoon blocked, \% & & - & - & & - & - & & & \\
\hline Mov Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 567 & 528 & 951 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & - & - & 567 & 528 & - \\
\hline Stage 1 & - & - & - & - & - & - & 897 & 805 & \\
\hline Stage 2 & - & - & - & - & - & - & 702 & 650 & \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}

\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2 & 0 & 11.7 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1279 & - & - & - & 692 \\
HCM Lane V/C Ratio & 0.03 & - & - & - & 0.225 \\
HCM Control Delay (s) & 7.9 & 0 & - & - & 11.7 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 0.9
\end{tabular}

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.4 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 513 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.195 & 0.104 & - & - & 0.033 & - \\
\hline HCM Control Delay (s) & 13.7 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 952 & 112 & 202 & 877 & 234 & 32 \\
\hline v/c Ratio & 0.09 & 0.96 & 0.20 & 0.69 & 0.51 & 0.46 & 0.07 \\
\hline Control Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Length 50th (t) & 4 & 160 & 0 & 62 & 82 & 32 & 6 \\
\hline Queue Length 95th ( t ) & 16 & \#274 & 12 & \#141 & 171 & 84 & 22 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 123 & 991 & 569 & 309 & 1725 & 512 & 465 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.96 & 0.20 & 0.65 & 0.51 & 0.46 & 0.07 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & 4 & 7 & & 1 & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 「 & \({ }^{7}\) & 中 \({ }^{\text {a }}\) & & & \& & & & \& & \\
\hline Volume (veh/h) & 10 & 895 & 105 & 190 & 820 & 5 & 95 & 10 & 115 & 15 & 10 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 952 & 0 & 202 & 872 & 5 & 101 & 11 & 122 & 16 & 11 & 5 \\
\hline Adj No. of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap, veh/h & 19 & 1023 & 458 & 249 & 1511 & 9 & 266 & 57 & 246 & 298 & 189 & 71 \\
\hline Arrive On Green & 0.01 & 0.30 & 0.00 & 0.15 & 0.44 & 0.44 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 \\
\hline Sat Flow, veh/h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 524 & 177 & 763 & 607 & 588 & 221 \\
\hline Grp Volume(v), veh/h & 11 & 952 & 0 & 202 & 428 & 449 & 234 & 0 & 0 & 32 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1464 & 0 & 0 & 1416 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 3.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 6.6 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.43 & & 0.52 & 0.50 & & 0.16 \\
\hline Lane Grp Cap(c), veh/h & 19 & 1023 & 458 & 249 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline V/C Ratio(X) & 0.58 & 0.93 & 0.00 & 0.81 & 0.58 & 0.58 & 0.41 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 128 & 1023 & 458 & 320 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 26.0 & 17.9 & 0.0 & 21.8 & 11.1 & 11.1 & 14.3 & 0.0 & 0.0 & 12.4 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 24.5 & 14.4 & 0.0 & 11.5 & 1.1 & 1.1 & 2.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 8.7 & 0.0 & 3.6 & 4.9 & 5.1 & 3.1 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 50.5 & 32.3 & 0.0 & 33.2 & 12.2 & 12.2 & 16.5 & 0.0 & 0.0 & 12.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & C & B & B & B & & & B & & \\
\hline Approach Vol, veh/h & & 963 & & & 1079 & & & 234 & & & 32 & \\
\hline Approach Delay, s/veh & & 32.5 & & & 16.1 & & & 16.5 & & & 12.6 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline
\end{tabular}


Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.9 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 255 & 310 & 0 & 70 & 210 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 300 & 365 & 0 & 82 & 247 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline Approach & & WB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 2 & & & 2 & \\
\hline Conflicting Approach Left & & NB & & & & & & WB & \\
\hline Conflicting Lanes Left & & 2 & & & 0 & & & 1 & \\
\hline Conflicting Approach Right & & SB & & & WB & & & & \\
\hline Conflicting Lanes Right & & 2 & & & 1 & & & 0 & \\
\hline HCM Control Delay & & 20.5 & & & 16.2 & & & 14.4 & \\
\hline HCM LOS & & C & & & C & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 255 & 310 & 315 & 70 & 210 \\
LT Vol & 255 & 0 & 0 & 0 & 210 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 300 & 365 & 371 & 82 & 247 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.534 & 0.577 & 0.651 & 0.167 & 0.465 \\
Departure Headway (Hd) & 6.407 & 5.693 & 6.32 & 7.288 & 6.776 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 561 & 631 & 571 & 490 & 529 \\
Service Time & 4.176 & 3.461 & 4.377 & 5.066 & 4.554 \\
HCM Lane V/C Ratio & 0.535 & 0.578 & 0.65 & 0.167 & 0.467 \\
HCM Control Delay & 16.4 & 16 & 20.5 & 11.5 & 15.4 \\
HCM Lane LOS & C & C & C & B & C \\
HCM 95th-tile Q & 3.1 & 3.7 & 4.7 & 0.6 & 2.4
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 28.3 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 200 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 222 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.9 & & & 16 & & & 39.8 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 200 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 200 & 0 & 0 \\
Lane Flow Rate & 350 & 222 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.561 & 0.464 & 0.048 & 0.918 \\
Departure Headway (Hd) & 5.774 & 7.509 & 6.282 & 5.171 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 623 & 478 & 567 & 696 \\
Service Time & 3.843 & 5.279 & 4.052 & 3.23 \\
HCM Lane V/C Ratio & 0.562 & 0.464 & 0.049 & 0.918 \\
HCM Control Delay & 16 & 16.7 & 9.4 & 39.8 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.5 & 2.4 & 0.2 & 12.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.2 & & & & & & & \\
\hline Intersection LOS & C & & & & & & & \\
\hline Approach & & SE & & NW & & & & SW \\
\hline Entry Lanes & & 2 & & 2 & & & & 1 \\
\hline Conflicting Circle Lanes & & 2 & & 2 & & & & 2 \\
\hline Adj Approach Flow, veh/h & & 1078 & & 1552 & & & & 63 \\
\hline Demand Flow Rate, veh/h & & 1121 & & 1614 & & & & 66 \\
\hline Vehicles Circulating, veh/h & & 520 & & 103 & & & & 1636 \\
\hline Vehicles Exiting, veh/h & & 1182 & & 1077 & & & & 81 \\
\hline Follow-Up Headway, s & & 3.186 & & 3.186 & & & & 3.186 \\
\hline Ped Vol Crossing Leg, \#/h & & 0 & & 0 & & & & 0 \\
\hline Ped Cap Adj & & 1.000 & & 1.000 & & & & 1.000 \\
\hline Approach Delay, s/veh & & 20.2 & & 18.7 & & & & 13.7 \\
\hline Approach LOS & & C & & C & & & & B \\
\hline Lane & Left & Right & Left & Right & Left & Bypass & Left & \\
\hline Designated Moves & LT & TR & LT & TR & LT & R & LTR & \\
\hline Assumed Moves & LT & TR & LT & TR & LT & R & LTR & \\
\hline RT Channelized & & & & & & Free & & \\
\hline Lane Util & 0.470 & 0.530 & 0.470 & 0.530 & 1.000 & & 1.000 & \\
\hline Critical Headway, s & 4.293 & 4.113 & 4.293 & 4.113 & 4.113 & & 4.113 & \\
\hline Entry Flow, veh/h & 527 & 594 & 759 & 855 & 81 & 483 & 66 & \\
\hline Cap Entry Lane, veh/h & 765 & 785 & 1046 & 1051 & 524 & 1976 & 360 & \\
\hline Entry HV Adj Factor & 0.961 & 0.962 & 0.961 & 0.962 & 0.962 & 0.962 & 0.957 & \\
\hline Flow Entry, veh/h & 506 & 571 & 730 & 823 & 78 & 464 & 63 & \\
\hline Cap Entry, veh/h & 735 & 755 & 1005 & 1012 & 504 & 1900 & 344 & \\
\hline V/C Ratio & 0.689 & 0.757 & 0.726 & 0.813 & 0.155 & 0.244 & 0.184 & \\
\hline Control Delay, s/veh & 18.5 & 21.8 & 16.0 & 21.0 & 9.2 & 0.0 & 13.7 & \\
\hline LOS & C & C & C & C & A & A & B & \\
\hline 95th \%tile Queue, veh & 6 & 7 & 7 & 9 & 1 & 1 & 1 & \\
\hline
\end{tabular}

HCM research expects at least one 'Stop' controlled approach at the intersection.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\rightarrow\) & & \(\checkmark\) & \(\checkmark\) \\
\hline Lane Group & EBT & WBT & SBL & SBR \\
\hline Lane Group Flow (vph) & 484 & 285 & 134 & 387 \\
\hline v/c Ratio & 0.75 & 0.27 & 0.35 & 0.60 \\
\hline Control Delay & 18.3 & 3.1 & 16.5 & 6.4 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 18.3 & 3.1 & 16.5 & 6.4 \\
\hline Queue Length 50th (tt) & 62 & 10 & 28 & 0 \\
\hline Queue Length 95th (ft) & \#260 & 44 & 62 & 48 \\
\hline Internal Link Dist (tt) & 1718 & 290 & 307 & \\
\hline Turn Bay Length (tt) & & & 150 & 100 \\
\hline Base Capacity (vph) & 739 & 1170 & 706 & 861 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.65 & 0.24 & 0.19 & 0.45 \\
\hline \multicolumn{5}{|l|}{Intersection Summary} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer
Queue shown is maximum after two cycles.}} \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
& & \(\rightarrow\) & & & & \\
& & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.

Queues
1: US 2 \& Hay Canyon Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 7 & \[
\nleftarrow
\] & 4 & 4 & & \(\dagger\) \\
\hline Lane Group & EBL & EBT & WBL & WBT & WBR & NBT & SBL & SBT \\
\hline Lane Group Flow (vph) & 10 & 906 & 68 & 927 & 36 & 130 & 31 & 47 \\
\hline v/c Ratio & 0.06 & 0.79 & 0.30 & 0.64 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline Control Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 22.4 & 21.2 & 23.6 & 13.0 & 0.1 & 8.6 & 12.3 & 8.8 \\
\hline Queue Length 50th (ft) & 3 & 125 & 19 & 83 & 0 & 14 & 6 & 5 \\
\hline Queue Length 95th (ft) & 14 & \#216 & 48 & 178 & 0 & 44 & 21 & 22 \\
\hline Internal Link Dist (ft) & & 2069 & & 2822 & & 280 & & 312 \\
\hline Turn Bay Length (ft) & 260 & & 260 & & 290 & & 30 & \\
\hline Base Capacity (vph) & 156 & 1249 & 234 & 1625 & 784 & 586 & 490 & 626 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.06 & 0.73 & 0.29 & 0.57 & 0.05 & 0.22 & 0.06 & 0.08 \\
\hline
\end{tabular}

Intersection Summary
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & 4 & 9 & \(p\) & & 1 & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & & \({ }^{7}\) & 44 & 「 & & \$ & & \({ }^{1}\) & \(\uparrow\) & \\
\hline Volume (veh/h) & 10 & 870 & 0 & 65 & 890 & 35 & 50 & 15 & 60 & 30 & 25 & 20 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1810 & 1810 & 0 & 1810 & 1810 & 1810 & 1900 & 1810 & 1900 & 1810 & 1810 & 1900 \\
\hline Adj Flow Rate, veh/h & 10 & 906 & 0 & 68 & 927 & 36 & 52 & 16 & 62 & 31 & 26 & 21 \\
\hline Adj No. of Lanes & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 & 0.96 \\
\hline Percent Heavy Veh, \% & 5 & 5 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Cap, veh/h & 18 & 1159 & 0 & 87 & 1297 & 580 & 277 & 108 & 251 & 534 & 325 & 262 \\
\hline Arrive On Green & 0.01 & 0.34 & 0.00 & 0.05 & 0.38 & 0.38 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
\hline Sat Flow, veh/h & 1723 & 3529 & 0 & 1723 & 3438 & 1538 & 478 & 308 & 717 & 1278 & 928 & 749 \\
\hline Grp Volume(v), veh/h & 10 & 906 & 0 & 68 & 927 & 36 & 130 & 0 & 0 & 31 & 0 & 47 \\
\hline Grp Sat Flow(s),veh/h/ln & 1723 & 1719 & 0 & 1723 & 1719 & 1538 & 1503 & 0 & 0 & 1278 & 0 & 1677 \\
\hline Q Serve(g_s), s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 & 0.9 \\
\hline Cycle Q Clear(g_c), s & 0.3 & 10.8 & 0.0 & 1.8 & 10.5 & 0.7 & 2.5 & 0.0 & 0.0 & 3.3 & 0.0 & 0.9 \\
\hline Prop In Lane & 1.00 & & 0.00 & 1.00 & & 1.00 & 0.40 & & 0.48 & 1.00 & & 0.45 \\
\hline Lane Grp Cap(c), veh/h & 18 & 1159 & 0 & 87 & 1297 & 580 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline V/C Ratio(X) & 0.56 & 0.78 & 0.00 & 0.78 & 0.71 & 0.06 & 0.20 & 0.00 & 0.00 & 0.06 & 0.00 & 0.08 \\
\hline Avail Cap(c_a), veh/h & 151 & 1203 & 0 & 226 & 1353 & 605 & 636 & 0 & 0 & 534 & 0 & 587 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 22.5 & 13.6 & 0.0 & 21.5 & 12.1 & 9.1 & 10.5 & 0.0 & 0.0 & 11.7 & 0.0 & 9.9 \\
\hline Incr Delay (d2), s/veh & 24.2 & 3.3 & 0.0 & 13.9 & 1.7 & 0.0 & 0.7 & 0.0 & 0.0 & 0.2 & 0.0 & 0.3 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.2 & 5.6 & 0.0 & 1.2 & 5.2 & 0.3 & 1.3 & 0.0 & 0.0 & 0.3 & 0.0 & 0.4 \\
\hline LnGrp Delay(d),s/veh & 46.7 & 16.9 & 0.0 & 35.3 & 13.9 & 9.1 & 11.2 & 0.0 & 0.0 & 11.9 & 0.0 & 10.2 \\
\hline LnGrp LOS & D & B & & D & B & A & B & & & B & & B \\
\hline Approach Vol, veh/h & & 916 & & & 1031 & & & 130 & & & 78 & \\
\hline Approach Delay, s/veh & & 17.3 & & & 15.1 & & & 11.2 & & & 10.9 & \\
\hline Approach LOS & & B & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 20.0 & 6.3 & 19.4 & & 20.0 & 4.5 & 21.3 & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 16.0 & 6.0 & 16.0 & & 16.0 & 4.0 & 18.0 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 4.5 & 3.8 & 12.8 & & 5.3 & 2.3 & 12.5 & & & & \\
\hline Green Ext Time (p_c), s & & 0.8 & 0.0 & 2.6 & & 0.8 & 0.0 & 4.3 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 15.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Int Delay, s/veh & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR \\
\hline Vol, veh/h & 2 & 80 & 30 & 75 & 85 & 15 & 25 & 2 & 25 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 & 96 \\
\hline Heavy Vehicles, \% & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline Mvmt Flow & 2 & 83 & 31 & 78 & 89 & 16 & 26 & 2 & 26 \\
\hline Major/Minor & Major1 & & & Major2 & & & Minor1 & & \\
\hline Conflicting Flow All & 104 & 0 & 0 & 115 & 0 & 0 & 357 & 363 & 99 \\
\hline Stage 1 & - & - & - & - & - & - & 103 & 103 & \\
\hline Stage 2 & - & - & - & - & - & - & 254 & 260 & \\
\hline Critical Hdwy & 4.14 & - & - & 4.14 & - & - & 7.14 & 6.54 & 6.24 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & - & - & 6.14 & 5.54 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & - & - & 6.14 & 5.54 & \\
\hline Follow-up Hdwy & 2.236 & - & - & 2.236 & - & - & 3.536 & 4.036 & 3.336 \\
\hline Pot Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 595 & 561 & 951 \\
\hline Stage 1 & - & - & - & - & - & - & 898 & 806 & - \\
\hline Stage 2 & - & - & - & - & - & - & 746 & 689 & - \\
\hline Platoon blocked, \% & & - & - & & - & - & & & \\
\hline Mov Cap-1 Maneuver & 1475 & - & - & 1462 & - & - & 567 & 528 & 951 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & - & - & 567 & 528 & - \\
\hline Stage 1 & - & - & - & - & - & - & 897 & 805 & \\
\hline Stage 2 & - & - & - & - & - & - & 702 & 650 & \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0.1 & 3.3 & 10.6 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 701 & 1475 & - & - & 1462 & - & - & 573 \\
HCM Lane V/C Ratio & 0.077 & 0.001 & - & - & 0.053 & - & - & 0.013 \\
\hline HCM Control Delay (s) & 10.6 & 7.4 & 0 & - & 7.6 & 0 & - & 11.4 \\
HCM Lane LOS & B & A & A & - & A & A & - & B \\
HCM 95th \%tile Q(veh) & 0.2 & 0 & - & - & 0.2 & - & - & 0
\end{tabular}
\begin{tabular}{lrrr}
\hline Intersection & & \\
\hline Int Delay, s/veh & & & \\
\hline Movement & 5 & 1 & 1 \\
\hline Vol, veh/h & 0 & 0 & 0 \\
Conflicting Peds, \#/hr & Stop & Stop & Stop \\
Sign Control & - & - & None \\
RT Channelized & - & - & - \\
Storage Length & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & - \\
Grade, \% & 96 & 96 & 96 \\
Peak Hour Factor & 4 & 4 & 4 \\
Heavy Vehicles, \% & 5 & 1 & 1 \\
\hline Mvmt Flow & & &
\end{tabular}
\begin{tabular}{lrrr} 
Major/Minor & Minor2 & & \\
\hline Conflicting Flow All & 370 & 372 & 96 \\
\(\quad\) Stage 1 & 253 & 253 & - \\
\(\quad\) Stage 2 & 117 & 119 & - \\
\hline Critical Hdwy & 7.14 & 6.54 & 6.24 \\
Critical Hdwy Stg 1 & 6.14 & 5.54 & - \\
Critical Hdwy Stg 2 & 6.14 & 5.54 & - \\
\hline Follow-up Hdwy & 3.536 & 4.036 & 3.336 \\
Pot Cap-1 Maneuver & 583 & 555 & 955 \\
\(\quad\) Stage 1 & 747 & 694 & - \\
\(\quad\) Stage 2 & 883 & 793 & - \\
Platoon blocked, \% & 540 & 523 & 955 \\
\hline Mov Cap-1 Maneuver & 540 & 523 & - \\
Mov Cap-2 Maneuver & 746 & 654 & - \\
\hline Stage 1 & 856 & 792 & - \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Approach & SB \\
\hline HCM Control Delay, s & 11.4 \\
HCM LOS & B
\end{tabular}

\section*{Minor Lane/Major Mvmt}

\begin{tabular}{lccc} 
Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2 & 0 & 11.7 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT & WBR & SBLn1 \\
\hline Capacity (veh/h) & 1279 & - & - & - & 692 \\
HCM Lane V/C Ratio & 0.03 & - & - & - & 0.225 \\
HCM Control Delay (s) & 7.9 & 0 & - & - & 11.7 \\
HCM Lane LOS & A & A & - & - & B \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - & 0.9
\end{tabular}

\begin{tabular}{lccc} 
Approach & EB & WB & NB \\
\hline HCM Control Delay, s & 0 & 1.4 & 11.9 \\
HCM LOS & & & B
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Minor Lane/Major Mvmt & NBLn1 & NBLn2 & EBT & EBR & WBL & WBT \\
\hline Capacity (veh/h) & 513 & 839 & - & - & 1325 & - \\
HCM Lane V/C Ratio & 0.195 & 0.104 & - & - & 0.033 & - \\
HCM Control Delay (s) & 13.7 & 9.8 & - & - & 7.8 & 0 \\
HCM Lane LOS & B & A & - & - & A & A \\
HCM 95th \%tile Q(veh) & 0.7 & 0.3 & - & - & 0.1 & -
\end{tabular}

Queues
8: Aplets Way/Nahahum Canyon Rd \& US 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \% & 7 & \(\leftarrow\) & \(\dagger\) & \(\dagger\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 11 & 952 & 112 & 202 & 877 & 234 & 32 \\
\hline v/c Ratio & 0.09 & 0.96 & 0.20 & 0.69 & 0.51 & 0.46 & 0.07 \\
\hline Control Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 25.5 & 42.6 & 1.9 & 35.7 & 10.7 & 12.1 & 12.5 \\
\hline Queue Length 50th (t) & 4 & 160 & 0 & 62 & 82 & 32 & 6 \\
\hline Queue Length 95th ( t ) & 16 & \#274 & 12 & \#141 & 171 & 84 & 22 \\
\hline Internal Link Dist (ft) & & 1947 & & & 1361 & 499 & 262 \\
\hline Turn Bay Length (t) & 560 & & 260 & 440 & & & \\
\hline Base Capacity (vph) & 123 & 991 & 569 & 309 & 1725 & 512 & 465 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.09 & 0.96 & 0.20 & 0.65 & 0.51 & 0.46 & 0.07 \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & & \(\checkmark\) & 7 & & 4 & 4 & \(\dagger\) & \% & \[
1
\] & \(\dagger\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 44 & 7 & \({ }^{7}\) & 中 \({ }^{\text {P }}\) & & & \& & & & \& & \\
\hline Volume (veh/h) & 10 & 895 & 105 & 190 & 820 & 5 & 95 & 10 & 115 & 15 & 10 & 5 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow, veh/h/ln & 1776 & 1776 & 1776 & 1776 & 1776 & 1900 & 1900 & 1776 & 1900 & 1900 & 1776 & 1900 \\
\hline Adj Flow Rate, veh/h & 11 & 952 & 0 & 202 & 872 & 5 & 101 & 11 & 122 & 16 & 11 & 5 \\
\hline Adj No. of Lanes & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Percent Heavy Veh, \% & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline Cap, veh/h & 19 & 1023 & 458 & 249 & 1511 & 9 & 266 & 57 & 246 & 298 & 189 & 71 \\
\hline Arrive On Green & 0.01 & 0.30 & 0.00 & 0.15 & 0.44 & 0.44 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 & 0.32 \\
\hline Sat Flow, veh/h & 1691 & 3374 & 1509 & 1691 & 3439 & 20 & 524 & 177 & 763 & 607 & 588 & 221 \\
\hline Grp Volume(v), veh/h & 11 & 952 & 0 & 202 & 428 & 449 & 234 & 0 & 0 & 32 & 0 & 0 \\
\hline Grp Sat Flow(s), veh/h/ln & 1691 & 1687 & 1509 & 1691 & 1687 & 1772 & 1464 & 0 & 0 & 1416 & 0 & 0 \\
\hline Q Serve(g_s), s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 3.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.3 & 14.5 & 0.0 & 6.1 & 10.1 & 10.1 & 6.6 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & 1.00 & & 0.01 & 0.43 & & 0.52 & 0.50 & & 0.16 \\
\hline Lane Grp Cap(c), veh/h & 19 & 1023 & 458 & 249 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline V/C Ratio(X) & 0.58 & 0.93 & 0.00 & 0.81 & 0.58 & 0.58 & 0.41 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 128 & 1023 & 458 & 320 & 741 & 778 & 569 & 0 & 0 & 559 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 26.0 & 17.9 & 0.0 & 21.8 & 11.1 & 11.1 & 14.3 & 0.0 & 0.0 & 12.4 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 24.5 & 14.4 & 0.0 & 11.5 & 1.1 & 1.1 & 2.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.3 & 8.7 & 0.0 & 3.6 & 4.9 & 5.1 & 3.1 & 0.0 & 0.0 & 0.4 & 0.0 & 0.0 \\
\hline LnGrp Delay(d),s/veh & 50.5 & 32.3 & 0.0 & 33.2 & 12.2 & 12.2 & 16.5 & 0.0 & 0.0 & 12.6 & 0.0 & 0.0 \\
\hline LnGrp LOS & D & C & & C & B & B & B & & & B & & \\
\hline Approach Vol, veh/h & & 963 & & & 1079 & & & 234 & & & 32 & \\
\hline Approach Delay, s/veh & & 32.5 & & & 16.1 & & & 16.5 & & & 12.6 & \\
\hline Approach LOS & & C & & & B & & & B & & & B & \\
\hline Timer & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & & \\
\hline Assigned Phs & & 2 & 3 & 4 & & 6 & 7 & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R c\) ), \(s\) & & 21.0 & 11.8 & 20.0 & & 21.0 & 4.6 & 27.2 & & & & \\
\hline Change Period (Y+Rc), s & & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & & & & \\
\hline Max Green Setting (Gmax), s & & 17.0 & 10.0 & 16.0 & & 17.0 & 4.0 & 22.0 & & & & \\
\hline Max Q Clear Time (g_c+l1), s & & 8.6 & 8.1 & 16.5 & & 2.7 & 2.3 & 12.1 & & & & \\
\hline Green Ext Time (p_c), s & & 1.0 & 0.1 & 0.0 & & 1.3 & 0.0 & 6.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 22.9 & & & & & & & & & \\
\hline HCM 2010 LOS & & & C & & & & & & & & & \\
\hline
\end{tabular}

Two Way Analysis cannot be performed on Signalized Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.9 & & & & & & & & \\
\hline Intersection LOS & C & & & & & & & & \\
\hline Movement & WBU & WBL & WBR & NBU & NBT & NBR & SBU & SBL & SBT \\
\hline Vol, veh/h & 0 & 270 & 45 & 0 & 255 & 310 & 0 & 70 & 210 \\
\hline Peak Hour Factor & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 & 0.92 & 0.85 & 0.85 \\
\hline Heavy Vehicles, \% & 2 & 4 & 4 & 2 & 4 & 4 & 2 & 4 & 4 \\
\hline Mvmt Flow & 0 & 318 & 53 & 0 & 300 & 365 & 0 & 82 & 247 \\
\hline Number of Lanes & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline Approach & & WB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 2 & & & 2 & \\
\hline Conflicting Approach Left & & NB & & & & & & WB & \\
\hline Conflicting Lanes Left & & 2 & & & 0 & & & 1 & \\
\hline Conflicting Approach Right & & SB & & & WB & & & & \\
\hline Conflicting Lanes Right & & 2 & & & 1 & & & 0 & \\
\hline HCM Control Delay & & 20.5 & & & 16.2 & & & 14.4 & \\
\hline HCM LOS & & C & & & C & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
Lane & NBLn1 & NBLn2 & WBLn1 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(0 \%\) & \(0 \%\) & \(86 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Thru, \(\%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) \\
Vol Right, \% & \(0 \%\) & \(100 \%\) & \(14 \%\) & \(0 \%\) & \(0 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 255 & 310 & 315 & 70 & 210 \\
LT Vol & 255 & 0 & 0 & 0 & 210 \\
Through Vol & 0 & 310 & 45 & 0 & 0 \\
RT Vol & 0 & 0 & 270 & 70 & 0 \\
Lane Flow Rate & 300 & 365 & 371 & 82 & 247 \\
Geometry Grp & 7 & 7 & 2 & 7 & 7 \\
Degree of Util (X) & 0.534 & 0.577 & 0.651 & 0.167 & 0.465 \\
Departure Headway (Hd) & 6.407 & 5.693 & 6.32 & 7.288 & 6.776 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 561 & 631 & 571 & 490 & 529 \\
Service Time & 4.176 & 3.461 & 4.377 & 5.066 & 4.554 \\
HCM Lane V/C Ratio & 0.535 & 0.578 & 0.65 & 0.167 & 0.467 \\
HCM Control Delay & 16.4 & 16 & 20.5 & 11.5 & 15.4 \\
HCM Lane LOS & C & C & C & B & C \\
HCM 95th-tile Q & 3.1 & 3.7 & 4.7 & 0.6 & 2.4
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 28.3 & & & & & & & & \\
\hline Intersection LOS & D & & & & & & & & \\
\hline Movement & EBU & EBL & EBR & NBU & NBL & NBT & SBU & SBT & SBR \\
\hline Vol, veh/h & 0 & 200 & 25 & 0 & 5 & 310 & 0 & 355 & 220 \\
\hline Peak Hour Factor & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 & 0.92 & 0.90 & 0.90 \\
\hline Heavy Vehicles, \% & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline Mvmt Flow & 0 & 222 & 28 & 0 & 6 & 344 & 0 & 394 & 244 \\
\hline Number of Lanes & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline Approach & & EB & & & NB & & & SB & \\
\hline Opposing Approach & & & & & SB & & & NB & \\
\hline Opposing Lanes & & 0 & & & 1 & & & 1 & \\
\hline Conflicting Approach Left & & SB & & & EB & & & & \\
\hline Conflicting Lanes Left & & 1 & & & 2 & & & 0 & \\
\hline Conflicting Approach Right & & NB & & & & & & EB & \\
\hline Conflicting Lanes Right & & 1 & & & 0 & & & 2 & \\
\hline HCM Control Delay & & 15.9 & & & 16 & & & 39.8 & \\
\hline HCM LOS & & C & & & C & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 \\
\hline Vol Left, \% & \(2 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(98 \%\) & \(0 \%\) & \(0 \%\) & \(62 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(38 \%\) \\
Sign Control & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 315 & 200 & 25 & 575 \\
LT Vol & 310 & 0 & 0 & 355 \\
Through Vol & 0 & 0 & 25 & 220 \\
RT Vol & 5 & 200 & 0 & 0 \\
Lane Flow Rate & 350 & 222 & 28 & 639 \\
Geometry Grp & 2 & 7 & 7 & 2 \\
Degree of Util (X) & 0.561 & 0.464 & 0.048 & 0.918 \\
Departure Headway (Hd) & 5.774 & 7.509 & 6.282 & 5.171 \\
Convergence, Y/N & Yes & Yes & Yes & Yes \\
Cap & 623 & 478 & 567 & 696 \\
Service Time & 3.843 & 5.279 & 4.052 & 3.23 \\
HCM Lane V/C Ratio & 0.562 & 0.464 & 0.049 & 0.918 \\
HCM Control Delay & 16 & 16.7 & 9.4 & 39.8 \\
HCM Lane LOS & C & C & A & E \\
HCM 95th-tile Q & 3.5 & 2.4 & 0.2 & 12.3
\end{tabular}

Two Way Analysis cannot be performed on an All Way Stop Intersection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 16.2 & & & & & & & \\
\hline Intersection LOS & C & & & & & & & \\
\hline Approach & & SE & & NW & & & & SW \\
\hline Entry Lanes & & 2 & & 2 & & & & 1 \\
\hline Conflicting Circle Lanes & & 2 & & 2 & & & & 2 \\
\hline Adj Approach Flow, veh/h & & 1078 & & 1552 & & & & 63 \\
\hline Demand Flow Rate, veh/h & & 1121 & & 1614 & & & & 66 \\
\hline Vehicles Circulating, veh/h & & 520 & & 103 & & & & 1636 \\
\hline Vehicles Exiting, veh/h & & 1182 & & 1077 & & & & 81 \\
\hline Follow-Up Headway, s & & 3.186 & & 3.186 & & & & 3.186 \\
\hline Ped Vol Crossing Leg, \#/h & & 0 & & 0 & & & & 0 \\
\hline Ped Cap Adj & & 1.000 & & 1.000 & & & & 1.000 \\
\hline Approach Delay, s/veh & & 20.2 & & 18.7 & & & & 13.7 \\
\hline Approach LOS & & C & & C & & & & B \\
\hline Lane & Left & Right & Left & Right & Left & Bypass & Left & \\
\hline Designated Moves & LT & TR & LT & TR & LT & R & LTR & \\
\hline Assumed Moves & LT & TR & LT & TR & LT & R & LTR & \\
\hline RT Channelized & & & & & & Free & & \\
\hline Lane Util & 0.470 & 0.530 & 0.470 & 0.530 & 1.000 & & 1.000 & \\
\hline Critical Headway, s & 4.293 & 4.113 & 4.293 & 4.113 & 4.113 & & 4.113 & \\
\hline Entry Flow, veh/h & 527 & 594 & 759 & 855 & 81 & 483 & 66 & \\
\hline Cap Entry Lane, veh/h & 765 & 785 & 1046 & 1051 & 524 & 1976 & 360 & \\
\hline Entry HV Adj Factor & 0.961 & 0.962 & 0.961 & 0.962 & 0.962 & 0.962 & 0.957 & \\
\hline Flow Entry, veh/h & 506 & 571 & 730 & 823 & 78 & 464 & 63 & \\
\hline Cap Entry, veh/h & 735 & 755 & 1005 & 1012 & 504 & 1900 & 344 & \\
\hline V/C Ratio & 0.689 & 0.757 & 0.726 & 0.813 & 0.155 & 0.244 & 0.184 & \\
\hline Control Delay, s/veh & 18.5 & 21.8 & 16.0 & 21.0 & 9.2 & 0.0 & 13.7 & \\
\hline LOS & C & C & C & C & A & A & B & \\
\hline 95th \%tile Queue, veh & 6 & 7 & 7 & 9 & 1 & 1 & 1 & \\
\hline
\end{tabular}

HCM research expects at least one 'Stop' controlled approach at the intersection.


HCM research expects at least one 'Stop' controlled approach at the intersection.

Appendix 7: Large Size Graphics of Alternatives



















Appendix 8: Cost Estimate

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}

SR:002 Beginning ARM: \(\mathbf{1 0 0 . 0 0}\) Ending ARM: \(\mathbf{1 0 0 . 2 7}\) Length(mile): 0.27
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvements Only)
\# of NoBuild Lane(s) in NB/EB Direction: 0 \# of Build Lane(s) in NB/EB Direction: 0
\# of NoBuild Lane(s) in SB/WB Direction: 0 \# of Build Lane(s) in SB/WB Direction: 0
\begin{tabular}{rcc}
\multicolumn{2}{r}{ PROJECT COST SUMMARY } \\
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000\) s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 125\) & \(\$ 167\) \\
Right Of Way: & \(\$ 10\) & \(\$ 13\) \\
Environmental Mitigation: & \(\$ 89\) & \(\$ 119\) \\
Construction: & \(\$ 1,480\) & \(\$ 1,974\) \\
\hline Total Project Cost: & \(\$ 1,705\) & \(\$ 2,273\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}

SR:002 Beginning ARM: \(\mathbf{1 0 0 . 0 0}\) Ending ARM: 100.27 Length(mile): 0.27
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvements Only)
\# of NoBuild Lane(s) in NB/EB Direction: 0
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\)
Improvement Type: GP
\# of Build Lane(s) in NB/EB Direction: \(\mathbf{0}\)
\# of Build Lane(s) in SB/WB Direction: \(\mathbf{0}\)
Terrain Type: \(\mathbf{R}\)
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$139,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$11,000 & Drainage: & \$46,000 \\
\hline & & Stormwater Detention and Treatment: & \$14,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$119,000 & Temporary Water Pollution Contro: & \$12,000 \\
\hline Utility Relocation: & \$3,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$103,000 & Roadside Development: & \$27,000 \\
\hline Staging: & \$12,000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$237,000 & TRAFFIC/rail & \\
\hline & & Traffic/Trail Services and Safety: & \$160,000 \\
\hline \multicolumn{2}{|l|}{STRUCTURES} & & \\
\hline Bridges and Tunnels: & \$0 & Workzone Traffic Control: & \$59,000 \\
\hline Retaining Walls: & \$788,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$114,000 \\
\hline PAVEMENT & \$50,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 125,000\) & \(\$ 167,000\) \\
\hline ROW & \(\$ 10,000\) & \(\$ 13,000\) \\
\hline CN & \(\$ 1,570,000\) & \(\$ 2,093,000\) \\
\hline Total & \(\$ 1,705,000\) & \(\$ 2,273,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 0 . 0 0}\)
EARM: 100.27
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 0
\# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 0.48 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & & per SY \\
\hline Roadside cleanup (Lump sum): & 0.27 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 7,159 & & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 11,932 & \$6 & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & & per LF \\
\hline Large culvert (LF): & 27 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 371 & & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 21,000 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 25,200 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 10,500 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.00
EARM: 100.27
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: \(0 \quad\) \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to 140' (SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): 0
\(\$ 3.00\) per SF
16,800
\$5.52 per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 0.48 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 0.27 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.00
EARM: 100.27
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: \(0 \quad\) \# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 163 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 1 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 1 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 0.27 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum) & 0.27 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 2,800 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 0.40 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{1 0 0 . 0 0}\)
EARM:
100.27

Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 0
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 0

\section*{GRADING}

\section*{Grading Total:}

Clear and grub (Acre):
Building demolition (Lump sum): \$0

Removal of structures (Lump sum):
Pavement removal (SY): \$0 \$0

Roadside cleanup (Lump sum):

\section*{Roadway excavation (CY): \$28,636}

Gravel borrow/embankment compaction (Ton): \$71,591

\section*{DRAINAGE}

Drainage Total:
\$45,765
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 42,424\)
Ditch excavation (LF): \$3,341
STORMWATER DETENTION AND TREATMENT Total: \$13,608
Detention pond (SF of new impervious surface): \$7,560
Water quality pond (SF of new impervious surface): \$6,048
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
\begin{tabular}{rrr}
\hline WALLS Walls Total: & \(\$ 787,500\) \\
& Retaining walls (SF): & \(\$ 787,500\) \\
Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}

\section*{SR: 002}

BARM: \(\mathbf{1 0 0 . 0 0}\)
EARM: \(\mathbf{1 0 0 . 2 7}\)
Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 0
\# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|}
\hline BRIDGES Bridge Total: & \$0 \\
\hline Removal of existing bridges (SF): & \$0 \\
\hline Bridge widening (SF): & \$0 \\
\hline Bridge - span up to 140' (SF): & \$0 \\
\hline Bridge - span up to 200' (SF): & \$0 \\
\hline Bridge - span up to 400' (SF): & \$0 \\
\hline Bridge - span more than 400' (SF): & \$0 \\
\hline Floating bridge (SF): & \$0 \\
\hline Movable bridge (SF): & \$0 \\
\hline Lids without Ventilation (SF): & \$0 \\
\hline Tunnel (LF): & \$0 \\
\hline Pedestrian Bridge (SF): & \$0 \\
\hline Railroad bridge replacement (LF): & \$0 \\
\hline PAVEMENTS Pavement Total: & \$50,400 \\
\hline Asphalt Concrete Pavement, ACP (SF): & \$50,400 \\
\hline Portland Cement Concrete Pavement, PCCP (SF): & \$0 \\
\hline ROADSIDE DEVELOPMENT Roadside Dev. Total: & \$27,231 \\
\hline Fencing (LF): & \$0 \\
\hline Seeding, mulching and fertilizing (Acre): & \$716 \\
\hline Roadside Restoration (Lump sum): & \$26,515 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: \(\mathbf{1 0 0 . 0 0}\) \\ EARM: \\ 100.27}

Project Title: West Cashmere Alignment Option 1 (West Approach Roadway Improvemen
\# of NoBuild Lane in NB/EB direction: \(\mathbf{0}\) \# of NoBuild Lane in SB/WB direction: \(\mathbf{0}\)
\# of Build Lane in NB/EB direction: 0 \# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}

Traffic Total:
Guardrail (LF):
\$160,347
\$2,116
Guardrail terminal (Each): \$902

Concrete barrier(LF):
Impact attenuator (Each): \$0

Signal (Each): \$150,000
Roundabout (Each):
Illumination (Each): \(\$ 0\)

ITS (Lump sum):
Signing (Lump sum):
\$6,629
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 700\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0

\section*{WETLAND MITIGATION}

Wetland Total: \$0

Category I - High value wetland (Acre):
Category II and III - Medium value wetland (Acre):
Category IV - Low value wetland (Acre):
Stream culvert (Each):
Beach restoration (Each):

RIGHT OF WAY
ROW Total: \(\quad \$ 10,800\)
Vacant land (Acre): \(\quad \$ 10,800\)
Residential land (Acre): \$0
Commercial land (Acre): \$0
OTHER ITEMS
User defined additional items:
\$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}

SR:002 Beginning ARM: \(\mathbf{1 0 0 . 0 1}\) Ending ARM: 100.40 Length(mile): \(\mathbf{0 . 3 9}\)
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvements only)
\# of NoBuild Lane(s) in NB/EB Direction: 0 \# of Build Lane(s) in NB/EB Direction: 2
\# of NoBuild Lane(s) in SB/WB Direction: 0 \# of Build Lane(s) in SB/WB Direction: 2
\begin{tabular}{rcc}
\multicolumn{2}{r}{ PROJECT COST SUMMARY } \\
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 s)\)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \(\$ 1000 \mathrm{~s})\)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 331\) & \(\$ 442\) \\
Right Of Way: & \(\$ 10\) & \(\$ 13\) \\
Environmental Mitigation: & \(\$ 603\) & \(\$ 804\) \\
Construction: & \(\$ 3,445\) & \(\$ 4,594\) \\
\hline Total Project Cost: & \(\$ 4,389\) & \(\$ 5,852\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR: 002
Beginning ARM: 100.01
Ending ARM: 100.40
Length(mile): \(\mathbf{0 . 3 9}\)
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvements only)
\# of NoBuild Lane(s) in NB/EB Direction: 0
\# of NoBuild Lane(s) in SB/WB Direction: 0
Improvement Type: GP
\# of Build Lane(s) in NB/EB Direction: 2
\# of Build Lane(s) in SB/WB Direction: 2
Terrain Type: \(\mathbf{R}\)
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$368,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$11,000 & Drainage: & \$338,000 \\
\hline & & Stormwater Detention and Treatment: & \$100,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$314,000 & Temporary Water Pollution Contro: & \$31,000 \\
\hline Utility Relocation: & \$8,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$762,000 & Roadside Development: & \$201,000 \\
\hline Staging: & \$31,000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$515,000 & & \\
\hline & & Traffic/Trail Services and Safety: & \$578,000 \\
\hline \multicolumn{2}{|l|}{STRUCTURES} & & \\
\hline Bridges and Tunnels: & \$0 & Workzone Traffic Control: & \$157,000 \\
\hline Retaining Walls: & \$788,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$302,000 \\
\hline PAVEMENT & \$372,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 331,000\) & \(\$ 442,000\) \\
\hline ROW & \(\$ 10,000\) & \(\$ 13,000\) \\
\hline CN & \(\$ 4,048,000\) & \(\$ 5,398,000\) \\
\hline Total & \(\$ 4,389,000\) & \(\$ 5,852,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.01
EARM: 100.40
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 2
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 3.52 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & & per SY \\
\hline Roadside cleanup (Lump sum): & 1.96 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 52,859 & & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 88,098 & & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & & per LF \\
\hline Large culvert (LF): & 196 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 2,741 & & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 155,052 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 186,062 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 10,500 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.01
EARM: 100.40
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to 140' (SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS
\begin{tabular}{rrr} 
Asphalt Concrete Pavement, ACP (SF): & 124,041 & \(\$ 3.00\) per SF \\
PCC Pavement (SF): & 0 & \(\$ 5.52\) per SF \\
\hline ROADSIDE DEVELOPMENT & & \\
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 3.52 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 1.96 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Thursday, March 26, 2015

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.01
EARM: 100.40
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvemen
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 2

\section*{TRAFFIC SERVICES AND SAFETY}


\section*{Project Cost: Detailed Report}

SR: \(\mathbf{0 0 2}\) BARM: \(\mathbf{1 0 0 . 0 1}\) EARM: \(\mathbf{1 0 0 . 4 0}\)
Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvemen
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2

\section*{GRADING}

\section*{Grading Total: \$762,064}

Clear and grub (Acre): \(\quad \$ 2,467\)
Building demolition (Lump sum): \$0
Removal of structures (Lump sum): \$0
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \$19,577
Roadway excavation (CY): \$211,434
Gravel borrow/embankment compaction (Ton): \$528,586

\section*{DRAINAGE}

Drainage Total:
\$337,903
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \$313,236
Ditch excavation (LF): \(\quad \$ 24,667\)
STORMWATER DETENTION AND TREATMENT Total: \$100,474
Detention pond (SF of new impervious surface): \$55,819
Water quality pond (SF of new impervious surface): \$44,655
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
\begin{tabular}{rrr}
\hline WALLS Walls Total: & \(\$ 787,500\) \\
\hline Retaining walls (SF): & \(\$ 787,500\) \\
& Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}


\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: \(\mathbf{1 0 0 . 0 1}\) \\ EARM: \\ 100.40}

Project Title: West Cashmere Alignment Option 2 (West Approach Roadway improvemen
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{2}\end{array}\)
TRAFFIC SERVICES AND SAFETY Traffic Total: \$578,287
Guardrail (LF): \$17,519
Guardrail terminal (Each): \$6,656
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \$0
Roundabout (Each): \(\quad \$ 500,000\)
Illumination (Each): \$0
ITS (Lump sum): \(\quad \$ 0\)
Signing (Lump sum): \$48,943
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 5,168\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION
Wetland Total: \$0

Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \$0
Beach restoration (Each): \$0
RIGHT OF WAY
ROW Total: \(\quad \$ 10,800\)
Vacant land (Acre): \(\quad \$ 10,800\)
Residential land (Acre): \(\quad \$ 0\)
Commercial land (Acre): \$0
OTHER ITEMS
User defined additional items:
\$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}
\begin{tabular}{lccc} 
SR: \(\mathbf{0 0 2}\) & Beginning ARM: 100.41 & Ending ARM: 100.74 & Length(mile): \(\mathbf{0 . 3 3}\) \\
Project Title: Goodwin Road Option \(\mathbf{1}\) (Intersection Only) & & \\
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{0}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: & \(\mathbf{0}\)
\end{tabular}

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 282\) & \(\$ 376\) \\
Right Of Way: & \(\$ 4\) & \(\$ 6\) \\
Environmental Mitigation: & \(\$ 99\) & \(\$ 132\) \\
Construction: & \(\$ 3,346\) & \(\$ 4,462\) \\
\hline Total Project Cost: & \(\$ 3,731\) & \(\$ 4,975\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR:002 Beginning ARM: 100.41 Ending ARM: 100.74 Length(mile): \(\mathbf{0 . 3 3}\)
Project Title: Goodwin Road Option 1 (Intersection Only)
\begin{tabular}{cc} 
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: \\
Improvement Type: GP & Terrain Type: \(\mathbf{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$313,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$5,000 & Drainage: & \$44,000 \\
\hline & & Stormwater Detention and Treatment: & \$13,000 \\
\hline \multicolumn{4}{|l|}{CONSTRUCTION / PREPARATION} \\
\hline Mobilization: & \$267,000 & Temporary Water Pollution Control: & \$27,000 \\
\hline Utility Relocation: & \$7,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$100,000 & Roadside Development: & \$26,000 \\
\hline Staging: & \$27,000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$439,000 & TRAFFIC/IRAIL & \\
\hline & & Traffic/Trail Services and Safety: & \$160,000 \\
\hline \multicolumn{4}{|l|}{STRUCTURES} \\
\hline Bridges and Tunnels: & \$0 & Workzone Traffic Control: & \$134,000 \\
\hline Retaining Walls: & \$2,280,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$257,000 \\
\hline PAVEMENT & \$49,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 282,000\) & \(\$ 376,000\) \\
\hline ROW & \(\$ 4,000\) & \(\$ 6,000\) \\
\hline CN & \(\$ 3,445,000\) & \(\$ 4,594,000\) \\
\hline Total & \(\$ 3,731,000\) & \(\$ 4,975,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.41
EARM: 100.74
Project Title: Goodwin Road Option 1 (Intersection Only)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: \(0 \quad\) \# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 0.46 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & & per SY \\
\hline Roadside cleanup (Lump sum): & 0.26 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 6,903 & & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 11,506 & & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & & per LF \\
\hline Large culvert (LF): & 26 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 358 & & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 20,250 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 24,300 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 30,400 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.41
EARM: 100.74
Project Title: Goodwin Road Option 1 (Intersection Only)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 0
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to \(140^{\prime}(\mathrm{SF}):\) & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): \(\quad 0 \quad \$ .52\) per SF
16,200
\(\$ 3.00\) per SF

ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 0.46 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 0.26 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Thursday, March 26, 2015

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.41
EARM: 100.74
Project Title: Goodwin Road Option 1 (Intersection Only)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: \(0 \quad\) \# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
Guardrail (LF): 169

Guardrail terminal (Each): 1
Concrete barrier(LF): 0
Impact attenuator (Each): 0
Signal (Each): 1
Roundabout (Each): 0
Illumination (Each): 0
ITS (Lump sum): 0.26
Signing (Lump sum): 0.26
Cantilever sign bridge (Each): 0
Sign bridge (Each): 0
Traffic marking (LF): \(\quad 2,700\)
Raised channelization (LF): 0
Curb, gutter and sidewalk (LF): 0
WETLAND MITIGATION
\begin{tabular}{rccrl}
\hline Category I - High value wetland (Acre): & 0.00 & \(\$ 2,500,000\) & per Acre \\
Category II and III - Medium value wetland (Acre): & 0.00 & \(\$ 1,900,000\) & per Acre \\
Category IV - Low value wetland (Acre): & 0.00 & \(\$ 300,000\) & per Acre \\
Stream culvert (Each): & 0 & \(\$ 1,500,000\) & per Each \\
Beach restoration (Each): & 0 & \(\$ 1,000,000\) & per Each \\
\hline VIGHT OF WAY & & & \\
\hline & Vacant land (Acre): & 0.17 & \(\$ 27,000\) & per Acre \\
\hline Residential land (Acre): & 0.00 & \(\$ 336,000\) & per Acre \\
Commercial land (Acre): & 0.00 & \(\$ 368,000\) & per Acre
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: \(\mathbf{1 0 0 . 7 4}\)
Project Title: Goodwin Road Option 1 (Intersection Only)
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 0
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 0

\section*{GRADING}

\section*{Grading Total: \\ \$99,527}

Clear and grub (Acre): \(\quad \$ 322\)
Building demolition (Lump sum): \$0

Removal of structures (Lump sum): \$0

Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \$2,557
Roadway excavation (CY): \(\quad \$ 27,614\)
Gravel borrow/embankment compaction (Ton): \$69,034
Drainage Total:
\$44,131
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 40,909\)
Ditch excavation (LF): \$3,222
STORMWATER DETENTION AND TREATMENT Total: \$13,122
Detention pond (SF of new impervious surface): \$7,290
Water quality pond (SF of new impervious surface): \(\quad \$ 5,832\)
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
\begin{tabular}{rrr}
\hline WALLS Walls Total: & \(\$ 2,280,000\) \\
\hline Retaining walls (SF): & \(\$ 2,280,000\) \\
Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: \(\mathbf{1 0 0 . 7 4}\)
Project Title: Goodwin Road Option 1 (Intersection Only)
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 0
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0


\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: \(\mathbf{1 0 0 . 7 4}\)
Project Title: Goodwin Road Option 1 (Intersection Only)
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & \mathbf{0} & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
\begin{tabular}{|c|c|}
\hline TRAFFIC SERVICES AND SAFETY Traffic Total: & \$160,136 \\
\hline Guardrail (LF): & \$2,200 \\
\hline Guardrail terminal (Each): & \$869 \\
\hline Concrete barrier(LF): & \$0 \\
\hline Impact attenuator (Each): & \$0 \\
\hline Signal (Each): & \$150,000 \\
\hline Roundabout (Each): & \$0 \\
\hline Illumination (Each): & \$0 \\
\hline ITS (Lump sum): & \$0 \\
\hline Signing (Lump sum) & \$6,392 \\
\hline Cantilever sign bridge (Each): & \$0 \\
\hline Sign bridge (Each): & \$0 \\
\hline Traffic marking (LF): & \$675 \\
\hline Raised channelization (LF): & \$0 \\
\hline Curb, gutter and sidewalk (LF): & \$0 \\
\hline WETLAND MITIGATION Wetland Total: & \$0 \\
\hline Category I-High value wetland (Acre): & \$0 \\
\hline Category II and III - Medium value wetland (Acre): & \$0 \\
\hline Category IV - Low value wetland (Acre): & \$0 \\
\hline Stream culvert (Each): & \$0 \\
\hline Beach restoration (Each): & \$0 \\
\hline RIGHT OF WAY ROW Total: & \$4,590 \\
\hline Vacant land (Acre): & \$4,590 \\
\hline Residential land (Acre): & \$0 \\
\hline Commercial land (Acre): & \$0 \\
\hline OTHER ITEMS User defined additional items: & \$0 \\
\hline \begin{tabular}{l}
These quantities have been calculated by using quantities per lane-mile \\
Date Printed: Thursday, March 26, 201
\end{tabular} & from WSDOT's past projects. \\
\hline
\end{tabular}

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}

SR: 002
Beginning ARM: 100.41
Ending ARM: 100.74
Length(mile): \(\mathbf{0 . 3 3}\)
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\# of NoBuild Lane(s) in NB/EB Direction: 0 \# of Build Lane(s) in NB/EB Direction:
\# of NoBuild Lane(s) in SB/WB Direction: 0 \# of Build Lane(s) in SB/WB Direction: 2
\begin{tabular}{rcc}
\multicolumn{2}{r}{ PROJECT COST SUMMARY } \\
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 474\) & \(\$ 632\) \\
Right Of Way: & \(\$ 170\) & \(\$ 227\) \\
Environmental Mitigation: & \(\$ 543\) & \(\$ 724\) \\
Construction: & \(\$ 5,160\) & \(\$ 6,880\) \\
\hline Total Project Cost: & \(\$ 6,347\) & \(\$ 8,462\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}

SR:002 Beginning ARM: 100.41 Ending ARM: 100.74 Length(mile): \(\mathbf{0 . 3 3}\)
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\begin{tabular}{lcc} 
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{2}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: & \(\mathbf{2}\) \\
Improvement Type: GP & Terrain Type: \(\mathbf{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$527,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$189,000 & Drainage: & \$295,000 \\
\hline & & Stormwater Detention and Treatment: & \$88,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$450,000 & Temporary Water Pollution Control: & \$45,000 \\
\hline Utility Relocation: & \$11,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$665,000 & Roadside Development: & \$175,000 \\
\hline Staging: & \$45,000 & & \\
\hline Construction Engineering: & \$633,000 & TRAFFIC/TRAIL & \\
\hline & & Traffic/Trail Services and Safety: & \$668,000 \\
\hline \multicolumn{2}{|l|}{STRUCTURES} & & \\
\hline Bridges and Tunnels: & \$0 & Workzone Traffic Control: & \$225,000 \\
\hline Retaining Walls: & \$2,280,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$432,000 \\
\hline PAVEMENT & \$325,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 474,000\) & \(\$ 632,000\) \\
\hline ROW & \(\$ 170,000\) & \(\$ 227,000\) \\
\hline CN & \(\$ 5,702,000\) & \(\$ 7,603,000\) \\
\hline Total & \(\$ 6,347,000\) & \(\$ 8,462,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 100.41
EARM: 100.74
\begin{tabular}{rrr} 
Project Title: & Goodwin Road Roundabout Option 2 (Intersection Improvements Only) \\
\# of NoBuild Lane in NB/EB direction: & \(\mathbf{0}\) & \# of NoBuild Lane in SB/WB direction: \(\mathbf{0}\) \\
\# of Build Lane in NB/EB direction: & \(\mathbf{2}\) & \# of Build Lane in SB/WB direction: \(\mathbf{2}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 3.07 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & & per SY \\
\hline Roadside cleanup (Lump sum): & 1.71 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 46,122 & & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 76,871 & & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & & per LF \\
\hline Large culvert (LF): & 171 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 2,392 & & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 135,292 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 162,351 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 30,400 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|c|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002 BARM: 100.41 EARM: 100.74
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to 140' (SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF): 108,234
\(\$ 3.00\) per SF
PCC Pavement (SF): 0
\(\$ 5.52\) per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 3.07 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 1.71 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002 BARM: 100.41 EARM: 100.74
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 2

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,186 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 3 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 0 & \$150,000 & per Each \\
\hline Roundabout (Each): & 1 & \$600,000 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 1.71 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum): & 1.71 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 18,039 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 0.17 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.50 & \$368,000 & per Acre \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: \(\mathbf{1 0 0 . 7 4}\)
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2

\section*{GRADING}

\section*{Grading Total: \\ \$664,947}

Clear and grub (Acre): \(\quad \$ 2,152\)
Building demolition (Lump sum): \(\$ 0\)
Removal of structures (Lump sum): \$0
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \$17,082
Roadway excavation (CY): \(\quad \$ 184,489\)
Gravel borrow/embankment compaction (Ton): \$461,223
Drainage Total:
\$294,841
Removal of drainage Structure (Each): \(\$ 0\)
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 273,318\)
Ditch excavation (LF): \$21,524
STORMWATER DETENTION AND TREATMENT Total: \$87,669
Detention pond (SF of new impervious surface): \(\$ 48,705\)
Water quality pond (SF of new impervious surface): \$38,964
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
\begin{tabular}{lrr}
\hline WALLS & Walls Total: & \(\mathbf{\$ 2 , 2 8 0 , 0 0 0}\) \\
\hline Retaining walls (SF): & \(\$ 2,280,000\) \\
Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: 100.74
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}

Bridge Total:
\$0
Removal of existing bridges (SF): \$0
Bridge widening (SF): \$0

Bridge - span up to 140' (SF): \$0
Bridge - span up to 200' (SF): \$0
Bridge - span up to 400' (SF): \$0
Bridge - span more than 400' (SF): \$0
Floating bridge (SF): \$0
Movable bridge (SF): \(\$ 0\)
Lids without Ventilation (SF): \$0
Tunnel (LF): \(\quad \$ 0\)
Pedestrian Bridge (SF): \$0
Railroad bridge replacement (LF): \$0

Asphalt Concrete Pavement, ACP (SF): \$324,701
Portland Cement Concrete Pavement, PCCP (SF): \$0

ROADSIDE DEVELOPMENT
Roadside Dev. Total: \(\quad \$ 175,436\)
Fencing (LF): \(\quad \$ 0\)
Seeding, mulching and fertilizing (Acre): \(\quad \$ 4,612\)
Roadside Restoration (Lump sum): \(\quad \$ 170,823\)

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 0 . 4 1}\)
EARM: \(\mathbf{1 0 0 . 7 4}\)
Project Title: Goodwin Road Roundabout Option 2 (Intersection Improvements Only)
\(\begin{array}{rrr}\text { \# of NoBuild Lane in NB/EB direction: } 0 & \text { \# of NoBuild Lane in SB/WB direction: } 0 \\ \text { \# of Build Lane in NB/EB direction: } 2 & \text { \# of Build Lane in SB/WB direction: } 2\end{array}\)
\begin{tabular}{|c|c|c|}
\hline TRAFFIC SERVICES AND SAFETY & ETY Traffic Total: & \$668,441 \\
\hline & Guardrail (LF): & \$15,418 \\
\hline & Guardrail terminal (Each): & \$5,808 \\
\hline & Concrete barrier(LF): & \$0 \\
\hline & Impact attenuator (Each): & \$0 \\
\hline & Signal (Each): & \$0 \\
\hline & Roundabout (Each): & \$600,000 \\
\hline & Illumination (Each): & \$0 \\
\hline & ITS (Lump sum): & \$0 \\
\hline & Signing (Lump sum): & \$42,706 \\
\hline & Cantilever sign bridge (Each): & \$0 \\
\hline & Sign bridge (Each): & \$0 \\
\hline & Traffic marking (LF): & \$4,510 \\
\hline & Raised channelization (LF): & \$0 \\
\hline & Curb, gutter and sidewalk (LF): & \$0 \\
\hline WETLAND MITIGATION & Wetland Total: & \$0 \\
\hline Category & gory I- High value wetland (Acre): & \$0 \\
\hline Category II and III - M & III - Medium value wetland (Acre): & \$0 \\
\hline Category IV & ory IV - Low value wetland (Acre): & \$0 \\
\hline & Stream culvert (Each): & \$0 \\
\hline & Beach restoration (Each): & \$0 \\
\hline RIGHT OF WAY & ROW Total: & \$188,590 \\
\hline & Vacant land (Acre): & \$4,590 \\
\hline & Residential land (Acre): & \$0 \\
\hline & Commercial land (Acre): & \$184,000 \\
\hline OTHER ITEMS Us & User defined additional items: & \$0 \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Title: US \(2 / 97\) Cashmere Area (Cottage Ave Roundabout \(\&\) signal option)
```


of NoBuild Lane(s) in NB/EB Direction: 0 \# ol Build Lane(s) in NB/EB Direction: 2

of NoBuild Lane(s) in SB/WB Direction: 0 \# of Build Lane(s) in SB/WB Direction: }

```
\begin{tabular}{rcc}
\multicolumn{2}{r}{ PROJECT COST SUMMARY } \\
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 \mathrm{~s}\) )
\end{tabular} & \begin{tabular}{c} 
High \\
(in \(\$ 1000 \mathrm{~s}\) )
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 373\) & \(\$ 497\) \\
Right Of Way: & \(\$ 67\) & \(\$ 89\) \\
Environmental Mitigation: & \(\$ 692\) & \(\$ 923\) \\
Construction: & \(\$ 3,867\) & \(\$ 5,156\) \\
\hline Total Project Cost: & \(\$ 4,999\) & \(\$ 6,665\)
\end{tabular}

\footnotetext{
Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project cosss. Low is \(10 \%\) below and high is 20\% above the estimated cost.
}

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)


Project Cost Summary:
\begin{tabular}{|c|r|r|}
\hline & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 373,000\) & \(\$ 497,000\) \\
\hline ROW & \(\$ 67,000\) & \(\$ 89,000\) \\
\hline CN & \(\$ 4,559,000\) & \(\$ 6,079,000\) \\
Total & \(\$ 4,999,000\) & \(\$ 6,665,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project cosss. Low is \(10 \%\) befow and high is \(20 \%\) above the estimated cost.

\footnotetext{
*This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SR: 002 BARM: 101.51 EARM: 10} \\
\hline \multicolumn{4}{|l|}{Project Title: US \(2 / 97\) Cashmere Area (Cottage Ave Roundabout \& signal option)} \\
\hline \begin{tabular}{l}
\# of NoBuild Lane in NB/EB direction: 0 \\
\# of Build Lane in NB/EB direction: 2
\end{tabular} & \multicolumn{3}{|l|}{\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 2} \\
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 4.05 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & \$3 & pers SY \\
\hline Roadside cleanup (Lump sum): & 2.25 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 60,690 & \$4 & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 101,150 & \$6 & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: \(24^{\prime \prime}\) RCSSP (LF): & 0 & \$60 & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3.000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & \$45 & per LF \\
\hline Large culvert (LF): & 225 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 3,147 & \$9 & per LF \\
\hline STORMWATER DETENTION AND TREATMENT & & & \\
\hline Detention pond (SF of imperv surface): & 178,024 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 213,629 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 6,800 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline
\end{tabular}

\footnotetext{
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 101.51
EARM: 101.82
Project Title: US 2/97 Cashmere Area (Cottage Ave Roundabout \& signal option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}

Removal of existing bridges (SF):
Bridge widening (SF):
Bridge - span up to \(140^{\prime}(S F)\) :
Bridge - span up to \(200^{\prime}(S F)\) :
Bridge - span up to \(400^{\prime}(\mathrm{SF}):\)
Bridge - span more than \(400^{\prime}(\mathrm{SF})\) :
Floating bridge (SF):
Movable bridge (SF):
Lids without Ventilation (SF):
Tunnel (LF):
Pedestrian Bridge (SF):
Railroad bridge replacement (LF):

PAVEMENTS
Asphalt Concrete Pavement, ACP (SF): \(\quad 142,419\)
PCC Pavement (SF): 0
\(\$ 3.00\) per SF
\(\$ 5.52\) per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rrc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 4.05 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 2.25 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

\section*{SR: 002 \\ BARM: \(\mathbf{1 0 1 . 5 1}\) \\ EARM: 101.82}

Project Title: US 2/97 Cashmere Area (Cottage Ave Roundabout \& signal option)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,456 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 4 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 1 & \$150,000 & per Each \\
\hline Roundabout (Each): & 1 & \$750,000 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 2.25 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum): & 2.25 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 23,737 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline \multicolumn{4}{|l|}{WETLAND MITIGATION} \\
\hline Category 1-High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline \multirow[t]{3}{*}{RIGHT OF WAY Vacant land (Acre): \(\begin{array}{r}\text { Vesidential land (Acre): } \\ \text { Commercial land (Acre): }\end{array}\)} & 2.75 & \$27,000 & per Acre \\
\hline & 0.00 & \$336,000 & per Acre \\
\hline & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 1 . 5 1}\) EARM: 101.82
Project Title: US 2/97 Cashmere Area (Cottage Ave Roundabout \& signal option)
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0


\section*{Grading Total: \(\quad \$ 874,969\)}

Clear and grub (Acre): \(\quad \$ 2,832\)
Building demolition (Lump sum): \$0
Removal of structures (Lump sum): \$0
Pavement removal (SY): \(\quad \$ 0\)
Roadside cleanup (Lump sum): \(\quad \$ 22,478\)
Roadway excavation (CY): \(\quad \$ 242,760\)
Gravel borrow/embankment compaction (Ton): \(\$ 606,899\)


Drainage Total:
\$387,966
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 359.644\)
Ditch excavation (LF): \(\quad \$ 28,322\)
STORMWATER DETENTION AND TREATMENT Total: \(\mathbf{\$ 1 1 5 , 3 5 9}\)
Detention pond (SF of new impervious surface): \(\$ 64,089\)
Water quality pond (SF of new impervious surface): \(\$ 51,271\)
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
WALLS
\begin{tabular}{rr} 
Walls Total: & \(\$ \mathbf{5 1 0 , 0 0 0}\) \\
Retaining walls (SF); & \(\$ 510,000\) \\
Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: 101.51
EARM: 101.82

\section*{Project Title: US \(2 / 97\) Cashmere Area (Cottage Ave Roundabout \& signal option) \\ \# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0 \\ \# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2}

\section*{BRIDGES \\ Bridge Total: \$0}

Removal of existing bridges (SF): \$0
Bridge widening (SF): \$0

Bridge - span up to \(140^{\prime}(\mathrm{SF}): \quad \$ 0\)
Bridge - span up to 200' (SF): \$0
Bridge - span up to \(400^{\prime}(S F): \$ 0\)
Bridge - span more than \(400^{\prime}(\mathrm{SF})\) : \(\$ 0\)
Floating bridge (SF): \(\quad \$ 0\)
Movable bridge (SF): \$0
Lids without Ventilation (SF): \$0
Tunnel (LF): \$0
Pedestrian Bridge (SF): \$0
Railroad bridge replacement (LF): \(\$ 0\)

PAVEMENTS
Pavement Total: \(\$ \mathbf{4 2 7}, \mathbf{2 5 7}\)
Asphalt Concrete Pavement, ACP (SF): \(\$ 427,257\)
Portland Cement Concrete Pavement, PCCP (SF):

ROADSIDE DEVELOPMENT
Roadside Dev. Total: \(\quad \mathbf{2 3 0 , 8 4 7}\)
Fencing (LF): \(\quad \$ 0\)
Seeding, mulching and fertilizing (Acre):
\$6.069
Roadside Restoration (Lump sum): \(\quad \$ 224.778\)

\section*{Project Cost: Detailed Report}

SR: 002
BARM: 101.51
EARM: 101.82
Project Title: US 2/97 Cashmere Area (Cottage Ave Roundabout \& signal option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction:
2


Traffic Total: \(\$ \mathbf{9 8 8}, 701\)
Guardrail (LF): \(\quad \$ 18,930\)
Guardrail terminal (Each): \(\quad \$ 7.642\)
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \$150,000
Roundabout (Each): \(\quad \$ 750,000\)
Illumination (Each): \$0
ITS (Lump sum): \$0
Signing (Lump sum): \(\quad \$ 56.194\)
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \(\$ 0\)
Traffic marking (LF): \(\quad \$ 5.934\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION
Wetland Total:
\$0
Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): S0
Beach restoration (Each): \$0
RIGHT OF WAY
ROW Total: \(\quad \$ 74,250\)
Vacant land (Acre): \(\quad \$ 74,250\)
Residential land (Acre): \(\$ 0\)
Commercial land (Acre): \$0
OTHER ITEMS User defined additional items: \$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
SR:002 Beginning ARM: 101.50
Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\)
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\)

\section*{PROJECT COST SUMMARY}
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 \mathrm{~s})\)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 418\) & \(\$ 558\) \\
Right Of Way: & \(\$ 67\) & \(\$ 89\) \\
Environmental Mitigation: & \(\$ 707\) & \(\$ 942\) \\
Construction: & \(\$ 4,407\) & \(\$ 5,876\) \\
\hline Total Project Cost: & \(\$ 5,599\) & \(\$ 7,465\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporring projent costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated coyt.

\footnotetext{
*This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR:002 Beginning ARM: 101.50 Ending ARM: 101.82 Length(mile): 0.32

Project Title: US \(2 / 97\) Cashmere Area (Cottage Ave two Roundabouts Option)
\begin{tabular}{|c|c|c|c|}
\hline \# of NoBuild Laness) in NB/EB Direction: & 0 & \# of Build Lane(s) in NB/EB Direction: & 2 \\
\hline \# of NoBuild Lanes(s) in SB/WB Direction: & 0 & \# of Build Lane(s) in SB/WB Direction: & 2 \\
\hline Improvement Type: GP & & Terrain Type: \(\mathbf{R}\) & \\
\hline CONTINGENCY & \$465,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$74,000 & Drainage: & \$394,000 \\
\hline & & Stormwater Detention and Treatment: & \$117,000 \\
\hline CONSTRUCTION / PREPARATION & & & \$40,000 \\
\hline Mobilization: & \$397,000 & & \\
\hline Utility Relocation: & \$10,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$888,000 & Roadside Development: & \$234,000 \\
\hline Staging: & \$40,000 & TRAFEICITRAIL & \\
\hline Construction Engincering: & \$651,000 & TRAFFCHRAL & \\
\hline & & Traffic/Trail Services and Safety: & \$1,390,000 \\
\hline STRUCTURES & & Workzone Traffic Control: & \$198,000 \\
\hline Bridges and Tunnels: & \$0 & & \\
\hline Retaining Walls: & \$510,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$381,000 \\
\hline PAVEMENT & \$433,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 418,000\) & \(\$ 558,000\) \\
\hline ROW & \(\$ 67,000\) & \(\$ 89,000\) \\
\hline CN & \(\$ 5,114,000\) & \(\$ 6,818,000\) \\
\hline Total & \(\$ 5,599,000\) & \(\$ 7,465,000\) \\
\hline
\end{tabular}

Note: Generally planning essimates are done with no design information. Therefore. many unknown factors may lead to changes in the estimates later om. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}
\begin{tabular}{|c|c|c|c|}
\hline 02 BARM: 101.50 & \multicolumn{3}{|l|}{EARM: 101.82} \\
\hline \multicolumn{4}{|l|}{Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)} \\
\hline \# of NoBuild Lane in NB/EB direction: 0 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\# of NoBuild Lane in SB/WB direction: 0 \\
\# of Build Lane in SB/WB direction: 2
\end{tabular}}} \\
\hline \# of Build Lane in NB/EB direction: 2 & & & \\
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 4.10 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & \$3 & per SY \\
\hline Roadside cleanup (Lump sum): & 2.28 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 61,565 & \$4 & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 102,608 & \$6 & per Ton \\
\hline
\end{tabular}
DRAINAGE
\begin{tabular}{rrrl} 
Removal of drainage Structure (Each): & 0 & \(\$ 650\) & per Each \\
Conveyance: \(24^{\prime \prime}\) RCSSP (LF): & 0 & \(\$ 60\) & per LF \\
Catch basin: Type 2-48" (Each): & 0 & \(\$ 3,000\) & per Each \\
Collection pipe:12" PCSSP (LF): & 0 & \(\$ 45\) & per LF \\
Large culvert (LF): & 228 & \(\$ 1,600\) & per LF \\
Ditch excavation (LF): & 3,192 & \(\$ 9\) & per LF
\end{tabular}

\section*{STORMWATER DETENTION AND TREATMENT}

Detention pond (SF of imperv surface): 180.591
Water quality pond (SF of imperv surface): 216,709
Detention vault (SF of new impervious surface): 0
Filtration water treatment (SF of imperv surface): 0
WALLS
\begin{tabular}{rrr} 
Retaining walls (SF): & 6,800 & 75 per SF \\
Noise walls (LF): & 0 & 300 per SF
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 101.50
EARM: 101.82
Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2
BRIDGES

Removal of existing bridges (SF):
Bridge widening (SF):
Bridge - span up to \(140^{\prime}(S F)\) :
Bridge - span up to 200' (SF):
Bridge - span up to \(400^{\prime}\) (SF):
Bridge - span more than \(400^{\prime}(\mathrm{SF})\) :
Floating bridge (SF):
Movable bridge (SF):
Lids without Ventilation (SF):
Tunnel (LF):
Pedestrian Bridge (SF):
Railroad bridge replacement (LF):
\(0 \quad 75\) per SF
\(0 \quad 250\) per SF
\(0 \quad 150\) per SF
\(0 \quad 200\) per SF
\(0 \quad 300\) per SF
\(0 \quad 325\) per SF
0
0
0
0
0

0

440 per SF
1,650 per SF
150 per SF
71,500 per LF
140 per SF
11,000 per LF

\section*{PAVEMENTS}

Asphalt Concrete Pavement, ACP (SF): 144.473
PCC Pavement (SF): 0
\(\$ 3.00\) per SF
\(\$ 5.52\) per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 4.10 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 2.28 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}
SR: 002 EARM: 101.50 EARM: 101.82
Project Title: US \(2 / 97\) Cashmere Area (Cottage Ave two Roundabouts Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,479 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 5 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 0 & \$150,000 & per Each \\
\hline Roundabout (Each): & 2 & \$650,000 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 2.28 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum) : & 2.28 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 24,079 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline \multicolumn{4}{|l|}{WETLAND MITIGATION} \\
\hline Category 1-High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 2.75 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: 101.50
EARM: 101.82

\section*{Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)}
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & 0 & \text { \# of NoBuild Lane in SB/WB direction: } 0 \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } 2\end{array}\)

GRADING
Grading Total: \(\quad \$ 887,585\)
Clear and grub (Acre): \(\quad \$ 2,873\)
Building demolition (Lump sum): \(\$ 0\)
Removal of structures (Lump sum): \$0
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \(\quad \$ 22,802\)
Roadway excavation (CY): \(\quad \$ 246,260\)
Gravel borrow/embankment compaction (Ton): \(\quad \$ 615,650\)
DRAINAGE
Drainage Total: \(\quad \$ 393,560\)
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 364,830\)
Ditch excavation (LF): \(\quad \$ 28,730\)
STORMWATER DETENTION AND TREATMENT Total: \(\mathbf{\$ 1 1 7 , 0 2 3}\)
Detention pond (SF of new impervious surface): \$65,013
Water quality pond (SF of new impervious surface): \(\quad \$ 52,010\)
Detention vault (SF of new impervious surface): \(\$ 0\)
Filtration water treatment (SF of new impervious surface): \(\$ 0\)
\begin{tabular}{rrr} 
Walls & Walls Total: & \(\$ 510,000\) \\
\hline Retaining walls (SF): & \(\$ 510,000\) \\
& Noise walls (LF): & \(\$ 0\)
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}
SR: 002 BARM: \(\mathbf{1 0 1 . 5 0}\) EARM: 101.82

Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0

    BRIDGES

Bridge Total:
 \$0

Removal of existing bridges (SF): \$0
Bridge widening (SF): \$0

Bridge - span up to \(140^{\prime}\) (SF): \$0
Bridge - span up to 200 (SF): \$0
Bridge - span up to \(400^{\prime}(S F)\) : S0
Bridge - span more than \(400^{\prime}(\mathrm{SF}): \quad \$ 0\)
Floating bridge (SF): \(\$ 0\)
Movable bridge (SF): \$0
Lids without Ventilation (SF): \(\quad \$ 0\)
Tunnel (LF): \(\quad \$ 0\)
Pedestrian Bridge (SF): \$0
Railroad bridge replacement (LF): \$0

PAVEMENTS

Pavement Total:
Asphalt Concrete Pavement, ACP (SF):
Portland Cement Concrete Pavement, PCCP (SF):

Roadside Dev. Total:
\$234,175
Fencing (LF): \(\quad \$ 0\)
Seeding, mulching and fertilizing (Acre):
Roadside Restoration (Lump sum): \(\quad \$ 228,019\)

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 1 . 5 0}\)
EARM: 101.82
Project Title: US 2/97 Cashmere Area (Cottage Ave two Roundabouts Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2 \(\quad\) \# of NoBuild Lane in SB/WB direction: 0
TRAFFIC SERVICES AND SAFETY Traffic Total: \(\mathbf{\$ 1 , 3 9 0 , 0 0 2}\)

Guardrail (LF): \(\quad \$ 19.225\)
Guardrail terminal (Each): \$7,753
Concrete barrier(LF): \(\quad \$ 0\)
Impact attenuator (Each): \$0
Signal (Each): S0
Roundabout (Each): \(\$ 1,300,000\)
Illumination (Each): \$0
ITS (Lump sum): \$0
Signing (Lump sum): \(\$ 57,005\)
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 6,020\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \(\$ 0\)
WETLAND MITIGATION
Wetland Total:\$0

Category 1 - High value wetland (Acre):

Category II and III - Medium value wetland (Acre):
Category IV - Low value wetland (Acre):
Stream culvert (Each):
Beach restoration (Each):
ROW Total:
\$74,250
Vacant land (Acre): \(\quad \$ 74,250\)
Residential land (Acre): \$0
Commercial land (Acre): \$0
User defined additional items: \$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
SR:002 Beginning ARM: 101.50 Ending ARM: 101.82 Length(mile): 0.32
```

Project Title: US 2/97 Cashmere Area (Cottage Signal Option)

of NoBuild Lane(s) in NB/EB Direction: 0 \# of Build Lame(s) in NB/EB Direction: 2

of NoBuild Lane(s) in SB/WB Direction: 0 \# of Buikd Lane(s) in SB/WB Direction: 2

```

\title{
PROJECT COST SUMMARY
}
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 \mathrm{~s})\)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 313\) & \(\$ 418\) \\
Right Of Way: & \(\$ 67\) & \(\$ 89\) \\
Environmental Mitigation: & \(\$ 698\) & \(\$ 931\) \\
Construction: & \(\$ 3,131\) & \(\$ 4,175\) \\
\hline Total Project Cost: & \(\$ 4,209\) & \(\$ 5,612\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, num anknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the extimated cost.

\footnotetext{
*This estimate is based on little or no design work, and hence intended for use for planning purposes only,
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}

SR:002 Beginning ARM: 101.50 Ending ARM: 101.82 Length(mile): 0.32

\section*{Project Title: US 2/97 Cashmere Area (Cottage Signal Option)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\# of NoBuild Lane(s) in NB/EB Direction: 0} & \# of Build Lane(s) in NB/EB Direction: & 2 \\
\hline \# of NoBuild Lane(s) in SB/WB Direction: & 0 & \# of Build Lane(s) in SB/WB Direction: & 2 \\
\hline Improvement Type. GP & & Terrain Type: \(\mathbf{R}\) & \\
\hline CONTINGENCY & \$348,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$74,000 & Drainage: & \$394,000 \\
\hline & & Stormwater Detention and Treatment: & \$117.000 \\
\hline CONSTRUCTION / PREPARATION & & & \$30,000 \\
\hline Mobilization: & \$297.000 & Water & 30.000 \\
\hline Utility Relocation: & \$7.000 & Wetland Mitigation; & \$0 \\
\hline Grading: & \$889,000 & Roadside Development: & \$235,000 \\
\hline Staging: & \$30,000 & TR & \\
\hline Construction Engineering: & \$487,000 & TRAFFICIRAIL & \\
\hline & & Traffic/Trail Services and Safety: & \$390,000 \\
\hline STRUCTURES & & & \\
\hline Bridges and Tunnels: & \$0 & Workzone Iraffic Control: & \$148,000 \\
\hline Retaining Walls: & \$510,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$285,000 \\
\hline PAVEMENT & \$434,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\hline & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{c|}{ High } \\
\hline PE & \(\$ 313,000\) & \(\$ 418,000\) \\
\hline ROW & \(\$ 67,000\) & \(\$ 89,000\) \\
\hline CN & \(\$ 3,830,000\) & \(\$ 5,106,000\) \\
\hline Total & \(\$ 4,209,000\) & \(\$ 5,612,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}

SR: \(\mathbf{0 0 2}\) BARM: \(\mathbf{1 0 1 . 5 0}\) EARM: \(\mathbf{1 0 1 . 8 2}\)
Project Title: US 2/97 Cashmere Area (Cottage Signal Option)

\section*{GRADING}
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2

\section*{Quantity}

Clear and grub (Acre):
Building demolition (Lump sum):
Removal of structures (Lump sum):
Pavement removal (SY):
Roadside cleanup (Lump sum):
Roadway excavation (CY):

Gravel borrow/embankment compaction (Ton):
102,770
DRAINAGE
\begin{tabular}{rrrl} 
Removal of drainage Structure (Each): & 0 & \(\$ 650\) & per Each \\
Conveyance: 24" RCSSP (LF): & 0 & \(\$ 60\) & per LF \\
Catch basin: Type 2-48" (Each): & 0 & \(\$ 3,000\) & per Each \\
Collection pipe:12" PCSSP (LF): & 0 & \(\$ 45\) & per LF \\
Large culvert (LF): & 228 & \(\$ 1,600\) & per LF \\
Ditch excavation (LF): & 3,197 & \(\$ 9\) & per LF
\end{tabular}

STORMWATER DETENTION AND TREATMENT

Detention pond (SF of imperv surface): \(\quad 180,876\)
Water quality pond (SF of imperv surface): 217,051
Detention vault (SF of new impervious surface): 0
Filtration water treatment (SF of imperv surface):
WALLS
\begin{tabular}{rrr} 
Retaining walls (SF): & 6,800 & \(75 \operatorname{per~SF}\) \\
Noise walls (LF): & 0 & 300 per SF
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

\section*{SR: 002 \\ BARM: \(\mathbf{1 0 1 . 5 0}\) \\ EARM: 101.82}
```

Project Title: US 2/97 Cashmere Area (Cottage Signal Option)

```
\# of NoBuild Lane in NB/EB direction:
\# of Build Lane in NB/EB direction:
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to \(140^{\prime}(\mathrm{SF})\) : & 0 & 150 per SF \\
Bridge - span up to \(200^{\prime}(\mathrm{SF})\) : & 0 & 200 per SF \\
Bridge - span up to \(400^{\prime}(\mathrm{SF})\) : & 0 & 300 per SF \\
Bridge - span more than \(400^{\prime}(\mathrm{SF})\) : & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

\section*{PAVEMENTS}
\begin{tabular}{rrc} 
Asphalt Concrete Pavement, ACP (SF): & 144,701 & \(\$ 3.00\) per SF \\
PCC Pavement (SF): & 0 & \(\$ 5.52\) per SF \\
ROADSIDE DEVELOPMENT & & \\
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 4.11 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 2.28 & 100,000 per Lump sum
\end{tabular}
\[
\text { Fencing (LF): } \quad 0
\]
4.11
2.28

75 per SF
250 per SF
150 per SF
200 per SF
300 per SF
325 per SF
440 per SF
1,650 per SF
150 per SF
71,500 per LF
140 per SF
11,000 per LF

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}
\begin{tabular}{|c|c|c|c|}
\hline SR: 002 BARM: \(\mathbf{1 0 1 . 5 0}\) EA & ARM: 101 & & \\
\hline Project Title: US 2/97 Cashmere Area (Cottage & Signal & & \\
\hline \begin{tabular}{l}
\# of NoBuild Lane in NB/EB direction: 0 \\
\# of Build Lane in NB/EB direction: 2
\end{tabular} & \# of NoBu & ane in SB/WB ane in SB/WB & \begin{tabular}{l}
direction: 0 \\
direction: 2
\end{tabular} \\
\hline TRAFFIC SERVICES AND SAFETY & & & \\
\hline Guardrail (LF): & 1,481 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 5 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 2 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 2.28 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum): & 2.28 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 24,117 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & : 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 2.75 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: 101.50
EARM: 101.82

\section*{Project Title: US 2/97 Cashmere Area (Cottage Signal Option)}
```


of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0

```
    \# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2

\section*{GRADING}


\section*{Grading Total:}
\$888,987
Clear and grub (Acre): \(\quad \$ 2,878\)
Building demolition (Lump sum):
Removal of structures (Lump sum): \$0
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \(\quad \$ 22,838\)
Roadway excavation (CY): \(\quad \$ 246,649\)
Gravel borrow/embankment compaction (Ton): \(\quad \$ 616,622\)

Drainage Total:
\$394,182
Removal of drainage Structure (Each): \$0

Conveyance: 24" RCSSP (LF): \$0

Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \(\$ 0\)
Large culvert (LF): \(\quad \$ 365,406\)
Ditch excavation (LF): \(\quad \$ 28,776\)
STORMWATER DETENTION AND TREATMENT

\section*{Total:}
\$117,208
Detention pond (SF of new impervious surface): \(\quad \$ 65,115\)
Water quality pond (SF of new impervious surface): \$52,092
Detention vault (SF of new impervious surface): \(\$ 0\)
Filtration water treatment (SF of new impervious surface): \$0
WALLS
Walls Total:
\(\$ 510,000\)
Retaining walls (SF): \(\quad \$ 510,000\)
Noise walls (LF): \(\quad \$ 0\)

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 1 . 5 0}\)
EARM: 101.82
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\[
\text { \# of Build Lane in NB/EB direction: } 2 \text { \# of Build Lane in SB/WB direction: } 2
\]

\section*{BRIDGES}
Bridge Total: \$0
Removal of existing bridges (SF): \$0
Bridge widening (SF): \$0
Bridge - span up to \(140^{\prime}(\mathrm{SF})\) : \(\$ 0\)
Bridge - span up to 200' (SF): \$0
Bridge - span up to \(400^{\prime}\) (SF): \$0
Bridge - span more than \(400^{\prime}\) (SF): \(\$ 0\)
Floating bridge (SF): \(\quad \$ 0\)
Movable bridge (SF): \(\quad \$ 0\)
Lids without Ventilation (SF): \$0
Tunnel (LF): \(\quad \$ 0\)
Pedestrian Bridge (SF): \$0
Railroad bridge replacement (LF): \$0
PAVEMENTS
Pavement Total:
\$434,102
Asphalt Concrete Pavement, ACP (SF): \(\$ 434,102\)
Portland Cement Concrete Pavement, PCCP (SF):
\$0
ROADSIDE DEVELOPMENT
Roadside Dev. Total: \$234,545
Fencing (LF): \(\quad \$ 0\)
Seeding, mulching and fertilizing (Acre): \(\quad \$ 6,166\)
Roadside Restoration (Lump sum): \(\quad \$ 228,379\)

\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: 101.50 \\ EARM: 101.82}

Project Title: US \(2 / 97\) Cashmere Area (Cottage Signal Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2 \(\quad\) \# of NoBuild Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|}
\hline TRAFFIC SERVICES AND SAFETY & Traffic Total: & \$390,147 \\
\hline & Guardrail (LF): & \$19.258 \\
\hline
\end{tabular}

Guardrail terminal (Each): \(\quad \$ 7.765\)
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \(\quad \$ 300,000\)
Roundabout (Each): \$0
Illumination (Each): \$0
ITS (Lump sum): \(\quad\) S0
Signing (Lump sum): \(\quad \$ 57,095\)
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 6,029\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION Wetland Total: \$0
Category 1 - High value wetland (Acre): \(\$ 0\)
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \(\$ 0\)
Beach restoration (Each): \$0
RIGHT OF WAY
ROW Total: \(\quad \$ 74,250\)
Vacant land (Acre): \(\quad \$ 74,250\)
Residential land (Acre): \(\quad \$ 0\)
Commercial land (Acre): \(\$ 0\)
OTHER ITEMS

\section*{User defined additional items: \$0}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate* \\ (2014dollars)
}

SR:002 Beginning ARM: 101.01 Ending ARM:101.38 Length(mile): 0.37
Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)
\begin{tabular}{ll} 
\# of NoBuild Lane(s) in NB/EB Direction: 0 & \# of Build Lane(s) in NB/EB Direction: 2 \\
\# of NoBuild Lane(s) in SB/WB Direction: 0 & \# of Build Lane(s) in SB/WB Direction:
\end{tabular}

\section*{PROJECT COST SUMMARY}
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 \mathrm{~s}\) )
\end{tabular} & \begin{tabular}{c} 
High \\
(in \(\$ 1000 \mathrm{~s})\)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 458\) & \(\$ 611\) \\
Right Of Way: & \(\$ 56\) & \(\$ 74\) \\
Environmental Mitigation: & \(\$ 618\) & \(\$ 824\) \\
Construction: & \(\$ 4,888\) & \(\$ 6,517\) \\
\hline Total Project Cost: & \(\$ 6,020\) & \(\$ 8,027\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reparting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated coss.

\footnotetext{
* This estimate is hased on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}
SR:002 Beginning ARM: 101.01 Ending ARM: 101.38 Length(mile); 0.37

Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\# of NoBuild Lane(s) in NB/EB Direction: 0} & \multicolumn{2}{|l|}{\# of Build Lane(s) in NB/EB Direction: 2} \\
\hline \# of NoBuild Lane(s) in SB/WB Direct & on: 0 & \# of Build Lane(s) in SB/WB Direction: & 2 \\
\hline \multicolumn{2}{|l|}{Improvement Type: GP} & \multicolumn{2}{|l|}{Terrain Type: \(\mathbf{R}\)} \\
\hline CONTINGENCY & \$509,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$62,000 & Drainage: & \$340,000 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CONSTRUCTION / PREPARATION}} & Stormwater Detention and Treatment: & \$101,000 \\
\hline & & & \\
\hline Mobilization: & \$434,000 & Temporary Water Pollution Control: & \$43,000 \\
\hline Utility Relocation: & \$11,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$768,000 & Roadside Development: & \$203,000 \\
\hline Staging: & \$43.000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$611,000 & TRAFFIC/TRAIL & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{STRUCTURES}} & Traffic/Trail Services and Safety: & \$829,000 \\
\hline & & \multirow[b]{2}{*}{Workzone Traffic Control:} & \\
\hline Bridges and Tunnels: & \$0 & & \$217,000 \\
\hline Retaining Walls: & \$1,725,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$417.000 \\
\hline PAVEMENT & \$375,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\hline & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 458,000\) & \(\$ 611,000\) \\
\hline ROW & \(\$ 56,000\) & \(\$ 74,000\) \\
\hline CN & \(\$ 5,506,000\) & \(\$ 7,342,000\) \\
\hline Total & \(\$ 6,020,000\) & \(\$ 8,027,000\) \\
\hline
\end{tabular}

Note: Generally plunning estimutes are done with no design information. Therefore, many anknown factors may lead to changes in the estimates later on. This is why a range approarh has heen used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 101.01
EARM: 101.38
Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)
\begin{tabular}{rrr} 
\# of NoBuild Lane in NB/EB direction: & 0 & \# of NoBuild Lane in SB/WB direction: 0 \\
\# of Build Lane in NB/EB direction: 2 & \# of Build Lane in SB/WB direction: 2
\end{tabular}
\begin{tabular}{rrrrl} 
& Quantity & Unit Cost & \multicolumn{1}{c}{ Unit } \\
Grailding demolition (Lump sum): & 0.00 & \(\$ 10,000\) & per Lump sum \\
Clear and grub (Acre): & 3.55 & \(\$ 700\) & per Acre \\
Removal of structures (Lump sum): & 0.00 & \(\$ 25,000\) & per Lump sum \\
Pavement removal (SY): & 0 & \(\$ 3\) & per SY \\
Roadside cleanup (Lump sum): & 1.97 & \(\$ 10,000\) & per Lump sum \\
Roadway excavation (CY): & 53,255 & \(\$ 4\) & per CY
\end{tabular}

DRAINAGE
\begin{tabular}{rrrl} 
Removal of drainage Structure (Each): & 0 & \(\$ 650\) & per Each \\
Conveyance: \(24^{\prime \prime}\) RCSSP (LF): & 0 & \(\$ 60\) & per LF \\
Catch basin: Type 2-48" (Each): & 0 & \(\$ 3,000\) & per Each \\
Collection pipe:12" PCSSP (LF): & 0 & \(\$ 45\) & per LF \\
Large culvert (LF): & 197 & \(\$ 1,600\) & per LF \\
Ditch excavation (LF): & 2,761 & \(\$ 9\) & per LF
\end{tabular}

\section*{STORMWATER DETENTION AND TREATMENT}

Detention pond (SF of imperv surface): \(\quad 156,214\)
Water quality pond (SF of imperv surface): 187,457
Detention vault (SF of new impervious surface):
Filtration water treatment (SF of imperv surface):
WALLS
\[
\begin{array}{rrr}
\text { Retaining walls (SF): } & 23,000 & 75 \text { per SF } \\
\text { Noise walls (LF): } & 0 & 300 \text { per SF }
\end{array}
\]

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 101.01
EARM: \(\mathbf{1 0 1 . 3 8}\)
Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to \(140^{\prime}(\mathrm{SF})\) : & 0 & 150 per SF \\
Bridge - span up to \(200^{\prime}(\mathrm{SF})\) : & 0 & 200 per SF \\
Bridge - span up to \(400^{\prime}(\mathrm{SF})\) : & 0 & 300 per SF \\
Bridge - span more than \(400^{\prime}(\mathrm{SF})\) : & 0 & 325 per SF \\
Floating bridge \((\mathrm{SF})\) : & 0 & 440 per SF \\
Movable bridge \((\mathrm{SF})\) : & 0 & 1,650 per SF \\
Lids without Ventilation \((\mathrm{SF})\) : & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

\section*{PAVEMENTS}

Asphalt Concrete Pavement, ACP (SF): 124,972
PCC Pavement (SF): 0
ROADSIDE DEVELOPMENT
\begin{tabular}{rrc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 3.55 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 1.97 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}
SR: \(002 \quad\) BARM: \(101.01 \quad\) EARM: 101.38
Project Title: US \(2 / 97\) Cashmere Area (Aplets Way Roundabout Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
TRAFFIC SERVICES AND SAFETY
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,361 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 4 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 0 & \$150,000 & per Each \\
\hline Roundabout (Each): & 1 & \$750,000 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 1.97 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum) : & 1.97 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 20,829 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline \multicolumn{4}{|l|}{WETLAND MITIGATION} \\
\hline Category I- High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1.500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$I,000,000 & per Each \\
\hline \multirow[t]{3}{*}{RIGHT OF WAY Vacant land (Acre): \(\begin{array}{r}\text { Vesidential land (Acre): } \\ \text { Commercial land (Acre): }\end{array}\)} & 2.30 & \$27,000 & per Acre \\
\hline & 0.00 & \$336,000 & per Acre \\
\hline & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

\section*{SR: 002}

BARM: 101.01
EARM: \(\mathbf{1 0 1 . 3 8}\)

\section*{Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)}
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & 0 & \text { \# of NoBuild Lane in SB/WB direction; } 0 \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } 2\end{array}\)

\section*{GRADING}

Grading Total:
\(\$ 767,778\)
Clear and grub (Acre): \(\quad \$ 2,485\)
Building demolition (Lump sum): \(\$ 0\)
Removal of structures (Lump sum): \$0
Pavement removal (SY): \(\$ 0\)
Roadside cleanup (Lump sum): \(\quad \$ 19,724\)
Roadway excavation (CY): \(\quad \$ 213.020\)
Gravel borrow/embankment compaction (Ton): \(\$ 532,549\)

\section*{DRAINAGE}

Drainage Total:
\$340,437
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 315,585\)
Ditch excavation (LF): \(\quad \$ 24,852\)
STORMWATER DETENTION AND TREATMENT Total: \(\mathbf{\$ 1 0 1 , 2 2 7}\)
Detention pond (SF of new impervious surface): \(\$ 56,237\)
Water quality pond (SF of new impervious surface): \(\quad \$ 44,990\)
Detention vault (SF of new impervious surface): \(\$ 0\)
Filtration water treatment (SF of new impervious surface): \$0
\begin{tabular}{|c|c|c|}
\hline ALLS & Walls Total: & \$1,725,000 \\
\hline & Retaining walls (SF): & \$1,725,000 \\
\hline & Noise walls (LF): & \$0 \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: 101.01 \\ EARM: 101.38}

Project Title: US 2/97 Cashmere Area (Aplets Way Roundabout Option)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 2
\begin{tabular}{|c|c|c|}
\hline BRIDGES & Bridge Total: & \$0 \\
\hline & Removal of existing bridges (SF): & \$0 \\
\hline & Bridge widening (SF): & \$0 \\
\hline & Bridge - span up to \(140{ }^{\prime}(\mathrm{SF})\) : & \$0 \\
\hline & Bridge - span up to 200' (SF): & \$0 \\
\hline & Bridge - span up to 400' (SF): & \$0 \\
\hline & Bridge - span more than 400' (SF): & \$0 \\
\hline & Floating bridge (SF): & \$0 \\
\hline & Movable bridge (SF): & \$0 \\
\hline & Lids without Ventilation (SF): & \$0 \\
\hline & Tunnel (LF): & \$0 \\
\hline & Pedestrian Bridge (SF): & \$0 \\
\hline & Railroad bridge replacement (LF): & \$0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PAVEMENTS Pavement Total: & \$374,915 \\
\hline Asphalt Concrete Pavement, ACP (SF): & \$374,915 \\
\hline Portland Cement Concrete Pavement, PCCP (SF): & \$0 \\
\hline ROADSIDE DEVELOPMENT Roadside Dev. Total: & \$202,566 \\
\hline Fencing (LF): & \$0 \\
\hline Seeding, mulching and fertilizing (Acre): & \$5,325 \\
\hline Roadside Restoration (Lump sum): & \$197,240 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: 101.01 \\ EARM: 101.38}

Project Title: US \(2 / 97\) Cashmere Area (Aplets Way Roundabout Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\begin{tabular}{llr} 
TRAFFIC SERVICES AND SAFETY & Traffic Total: & \(\mathbf{\$ 8 2 8 , 9 1 8}\) \\
\hline & Guardrail (LF): & \(\$ 17,695\)
\end{tabular}

Guardrail terminal (Each): \(\quad \$ 6,706\)
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \$0
Roundabout (Each): \(\quad \$ 750,000\)
Illumination (Each): \$0
ITS (Lump sum): \$0
Signing (Lump sum): \(\quad \$ 49,310\)
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \(\quad \$ 0\)
Traffic marking (LF): \(\quad \$ 5,207\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \(\$ 0\)
WETLAND MITIGATION Wetland Total: \$0
Category I - High value wetland (Acre): \(\$ 0\)
Category II and III - Medium value wetland (Acre): \(\$ 0\)
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \$0
Beach restoration (Each): \$0

RIGHT OF WAY

ROW Total:
\$62,100
Vacant land (Acre): \(\quad \$ 62,100\)
Residential land (Acre): \$0

Commercial land (Acre): \$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
SR:002 Beginning ARM: 101.00 Ending ARM: 101.38 Length(mile): \(\mathbf{0 . 3 8}\)

Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)
```


of NoBuild Lanc(s) in NB/EB Direction: 0 \# of Build Lane(s) in NB/EB Direction: 2

of NoBuild Lane(s) in SB/WB Direction: 0

of Build Lane(s) in SB/WB Direction: 2

```

\section*{PROJECT COST SUMMARY}
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \(\$ 1000 \mathrm{~s})\)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 418\) & \(\$ 557\) \\
Right Of Way: & \(\$ 56\) & \(\$ 74\) \\
Environmental Mitigation: & \(\$ 683\) & \(\$ 911\) \\
Construction: & \(\$ 4,421\) & \(\$ 5,894\) \\
\hline Total Project Cost: & \(\$ 5,577\) & \(\$ 7,436\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10\% below and high is 20\% above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}
SR:002 Beginning ARM: \(\mathbf{1 0 1 . 0 0}\) Ending ARM: \(\mathbf{1 0 1 . 3 8}\) Length(mile): 0.38

Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)
\begin{tabular}{ll} 
\# of NoBuild Lane(s) in NB/EB Direction: 0 & \# of Build Lane(s) in NB/EB Direction: 2 \\
\# of NoBuild Lame(s) in SB/WB Direction: 0 & \# of Build Lane(s) in SB/WB Direction:
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$464,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$62,000 & Drainage: & \$380,000 \\
\hline CONSTRUCTION / PREPARATION & & Stormwater Detention and Treatment: & \$113,000 \\
\hline Mobilization: & \$396,000 & Temporary Water Pollution Control: & \$40,000 \\
\hline Utility Relocation: & \$10,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$857,000 & Roadside Development: & \$226,000 \\
\hline Staging: & \$40,000 & & \\
\hline Construction Engineering: & \$650.000 & TRAFFIC/TRAIL & \\
\hline STRUCTURES & & Traffic/Trail Services and Safety: & \$238,000 \\
\hline Bridges and Tunnels: & \$0 & Workzone Traffic Control: & \$198,000 \\
\hline Retaining Walls: & \$1,725,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$381,000 \\
\hline PAVEMENT & \$419,000 & & \\
\hline
\end{tabular}

\section*{Project Cost Summary:}
\begin{tabular}{|c|r|r|}
\hline & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 418,000\) & \(\$ 557,000\) \\
\hline ROW & \(\$ 56,000\) & \(\$ 74,000\) \\
\hline CN & \(\$ 5,104,000\) & \(\$ 6,805,000\) \\
\hline Total & \(\$ 5,577,000\) & \(\$ 7,436,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore. many unknown factors may lead to changes in the estinates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.

\footnotetext{
* This estimate is based on litte or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SR: 002 BARM: \(\mathbf{1 0 1 . 0 0}\) EARM: \(\mathbf{1 0 1 . 3 8}\)} \\
\hline \multicolumn{4}{|l|}{Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\# of NoBuild Lane in NB/EB direction: 0 \\
\# of Build Lane in NB/EB direction: 2
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\# of NoBuild Lane in SB/WB direction: 0 \\
\# of Build Lane in SB/WB direction: 2
\end{tabular}} \\
\hline & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 3.96 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & \$3 & per SY \\
\hline Roadside cleanup (Lump sum): & 2.20 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 59,449 & \$4 & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 99,081 & \$6 & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & \$60 & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & \$45 & per LF \\
\hline Large culvert (LF): & 220 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 3.083 & & per LF \\
\hline \multicolumn{4}{|l|}{Stormwater detention and treatment} \\
\hline Detention pond (SF of imperv surface): & 174,383 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 209,260 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 23,000 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

\section*{SR: 002 BARM: \(\mathbf{1 0 1 . 0 0}\) EARM: \(\mathbf{1 0 1 . 3 8}\)}

\section*{Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)}
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2

\section*{BRIDGES}
Removal of existing bridges (SF):
Bridge widening (SF):
\[
\text { Bridge - span up to } 140^{\prime} \text { (SF): }
\]

75 per SF 250 per SF 150 per SF

200 per SF
300 per SF
325 per SF
440 per SF
1,650 per SF
150 per SF
71,500 per LF
140 per SF
11,000 per LF

\section*{PAVEMENTS}
\begin{tabular}{rrc} 
Asphalt Concrete Pavement, ACP (SF): \\
PCC Pavement (SF): & 139,507 & \(\$ 3.00\) per SF \\
ROADSIDE DEVELOPMENT
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

\section*{SR: 002 \\ BARM: \(\mathbf{1 0 1 . 0 0}\) \\ EARM: 101.38}

\section*{Project Title: US \(2 / 97\) Cashmere Area (Aplets Way Signal Option) \\ \# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2}

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,522 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 4 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 1 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 2.20 & \$200,000 & per Lump \\
\hline Signing (Lump sum) : & 2.20 & \$25,000 & per Lump \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 23.251 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline \multicolumn{4}{|l|}{WETLAND MITIGATION} \\
\hline Category I- High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline \multirow[t]{3}{*}{RIGHT OF WAY Vacant land (Acre): \(\begin{array}{r}\text { Residential land (Acre): } \\ \text { Rommercial land (Acre): }\end{array}\)} & 2.30 & \$27,000 & per Acre \\
\hline & 0.00 & \$336,000 & per Acre \\
\hline & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: 101.00
EARM: 101.38
Project Title: US \(2 / 97\) Cashmere Area (Aplets Way Signal Option)
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 2

GRADING

\section*{Grading Total: \(\$ 857,075\)}

Clear and grub (Acre): \(\quad \$ 2,774\)
Building demolition (Lump sum): \$0
Removal of structures (Lump sum): \$0
Pavement removal (SY): \(\quad \$ 0\)
Roadside cleanup (Lump sum): \(\$ 22.018\)
Roadway excavation (CY): \(\quad \$ 237,795\)
Gravel borrow/embankment compaction (Ton): \$594,488
DRAINAGE
Drainage Total: \(\quad \mathbf{\$ 3 8 0 , 0 3 2}\)
Removal of drainage Structure (Each): \$0
Conveyance: 24" RCSSP (LF): \$0
Catch basin: Type 2-48" (Each): \$0
Collection pipe:12" PCSSP (LF): \$0
Large culvert (LF): \(\quad \$ 352.289\)
Ditch excavation (LF): \(\quad \$ 27,743\)
STORMWATER DETENTION AND TREATMENT Total: \(\$ \mathbf{1 1 3 , 0 0 0}\)
Detention pond (SF of new impervious surface): \(\quad \$ 62,778\)
Water quality pond (SF of new impervious surface): \(\quad \$ 50,222\)
Detention vault (SF of new impervious surface): \$0
Filtration water treatment (SF of new impervious surface): \$0
WALLS
Walls Total: \(\quad \$ \mathbf{1 , 7 2 5 , 0 0 0}\)
Retaining walls (SF): \(\quad \$ 1,725,000\)
Noise walls (LF): \(\quad \$ 0\)

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 1 . 0 0}\) EARM: \(\mathbf{1 0 1 . 3 8}\)
Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction:
2
\begin{tabular}{rrl} 
Bridge Total: & \(\$ 0\) \\
\hline BRIDGES & Removal of existing bridges (SF): & \(\$ 0\) \\
Bridge widening (SF): & \(\$ 0\) \\
Bridge - span up to 140' (SF): & \(\$ 0\) \\
Bridge - span up to 200' (SF): & \(\$ 0\) \\
Bridge - span up to 400' (SF): & \(\$ 0\) \\
Bridge - span more than 400' (SF): & \(\$ 0\) \\
Floating bridge (SF): & \(\$ 0\) \\
Movable bridge (SF): & \(\$ 0\) \\
Lids without Ventilation (SF): & \(\$ 0\) \\
Tunnel (LF): & \(\$ 0\) \\
Pedestrian Bridge (SF): & \(\$ 0\) \\
Railroad bridge replacement (LF): & \(\$ 0\)
\end{tabular}
\begin{tabular}{rrr} 
PAVEMENTS Pavement Total: & \(\$ 418,520\) \\
\hline Asphalt Concrete Pavement, ACP (SF): & \(\$ 418,520\) \\
Portland Cement Concrete Pavement, PCCP (SF): & \(\$ 0\) \\
ROADSIDE DEVELOPMENT & Roadside Dev. Total: & \(\$ \mathbf{2 2 6 , 1 2 6}\) \\
\hline Fencing (LF): & \(\$ 0\) \\
Seeding, mulching and fertilizing (Acre): & \(\$ 5,945\) \\
Roadside Restoration (Lump sum): & \(\$ 220.181\)
\end{tabular}

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 1 . 0 0}\) EARM: \(\mathbf{1 0 1 . 3 8}\)

\section*{Project Title: US 2/97 Cashmere Area (Aplets Way Signal Option)}


These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}
\begin{tabular}{lccc} 
SR: \(\mathbf{0 0 2}\) & Beginning ARM: 10.20 & Ending ARM: \(\mathbf{1 0 . 4 1}\) & Length(mile): \(\mathbf{0 . 2 1}\) \\
Project Title: Goodwin New bridge Option & \(\mathbf{1}\) (w/5\% grade) & Includes Signalized Intersection & \\
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{2}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: & \(\mathbf{0}\)
\end{tabular}

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 894\) & \(\$ 1,192\) \\
Right Of Way: & \(\$ 80\) & \(\$ 107\) \\
Environmental Mitigation: & \(\$ 286\) & \(\$ 382\) \\
Construction: & \(\$ 10,457\) & \(\$ 13,943\) \\
\hline Total Project Cost: & \(\$ 11,717\) & \(\$ 15,623\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}

SR:002 Beginning ARM: \(\mathbf{1 0 . 2 0}\) Ending ARM: 10.41 Length(mile): 0.21
\begin{tabular}{lll} 
Project Title: Goodwin New bridge Option \(\mathbf{1}\) (w/5\% grade) Includes Signalized Intersection \\
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{2}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: & \(\mathbf{0}\) \\
Improvement Type: GP & Terrain Type: \(\mathbf{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$993,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$89,000 & Drainage: & \$123,000 \\
\hline & & Stormwater Detention and Treatment: & \$37,000 \\
\hline CONSTRUCTION / PREPARATION & & & \\
\hline Mobilization: & \$847,000 & Temporary Water Pollution Control: & \$85,000 \\
\hline Utility Relocation: & \$21,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$278,000 & Roadside Development: & \$73,000 \\
\hline Staging: & \$85,000 & TRAFFIC/TRAIL & \\
\hline Construction Engineering: & \$1,192,000 & , & \\
\hline & & Traffic/Trail Services and Safety: & \$178,000 \\
\hline STRUCTURES & & & \\
\hline Bridges and Tunnels: & \$4,200,000 & Workzone Traffic Control: & \$423,000 \\
\hline Retaining Walls: & \$2,706,000 & ADDITIONAL ITEMS & \$739,284 \\
\hline Noise Walls: & \$0 & SALES TAX & \$814,000 \\
\hline PAVEMENT & \$136,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 894,000\) & \(\$ 1,192,000\) \\
\hline ROW & \(\$ 80,000\) & \(\$ 107,000\) \\
\hline CN & \(\$ 10,743,000\) & \(\$ 14,324,000\) \\
\hline Total & \(\$ 11,717,000\) & \(\$ 15,623,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 2 0}\)
EARM: 10.41
Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0


\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 2 0}\)
EARM: 10.41
Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rrr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 16,800 & 250 per SF \\
Bridge - span up to \(140^{\prime}(\mathrm{SF}):\) & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF):

ROADSIDE DEVELOPMENT

45,211

0
\(\$ 3.00\) per SF
\$5.52 per SF

1,500 per Acre
100,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 2 0}\)
EARM: 10.41
Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
Guardrail (LF): 460

Guardrail terminal (Each): 1
Concrete barrier(LF): 0
Impact attenuator (Each): 0
Signal (Each): 1
Roundabout (Each): 0
Illumination (Each): 0
ITS (Lump sum): 0.71
Signing (Lump sum): 0.71
Cantilever sign bridge (Each): 0
Sign bridge (Each): 0
Traffic marking (LF): 7,535
Raised channelization (LF): 0
Curb, gutter and sidewalk (LF):
WETLAND MITIGATION
\begin{tabular}{|c|c|c|c|}
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 3.30 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Thursday, March 26, 2015

\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{1 0 . 2 0}\)
EARM:
10.41

Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|}
\hline GRADING & Grading Total: & \$277,761 \\
\hline & Clear and grub (Acre): & \$899 \\
\hline & Building demolition (Lump sum): & \$0 \\
\hline & Removal of structures (Lump sum): & \$0 \\
\hline & Pavement removal (SY): & \$0 \\
\hline & Roadside cleanup (Lump sum): & \$7,136 \\
\hline & Roadway excavation (CY): & \$77,065 \\
\hline & borrow/embankment compaction (Ton): & \$192,661 \\
\hline DRAINAGE & Drainage Total: & \$123,161 \\
\hline & Removal of drainage Structure (Each): & \$0 \\
\hline & Conveyance: 24" RCSSP (LF): & \$0 \\
\hline & Catch basin: Type 2-48" (Each): & \$0 \\
\hline & Collection pipe:12" PCSSP (LF): & \$0 \\
\hline & Large culvert (LF): & \$114,170 \\
\hline & Ditch excavation (LF): & \$8,991 \\
\hline STORMWA & TION AND TREATMENT Total: & \$36,621 \\
\hline & n pond (SF of new impervious surface): & \$20,345 \\
\hline & ty pond (SF of new impervious surface): & \$16,276 \\
\hline & n vault (SF of new impervious surface): & \$0 \\
\hline Filtratio & atment (SF of new impervious surface): & \$0 \\
\hline WALLS & Walls Total: & \$2,706,000 \\
\hline & Retaining walls (SF): & \$2,706,000 \\
\hline & Noise walls (LF): & \$0 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002 BARM: \(\mathbf{1 0 . 2 0}\) EARM: \(\mathbf{1 0 . 4 1}\)

Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}

Bridge Total: \$4,200,000
Removal of existing bridges (SF): \(\quad \$ 0\)
Bridge widening (SF): \(\quad \$ 4,200,000\)
Bridge - span up to 140' (SF): \$0
Bridge - span up to 200' (SF): \$0
Bridge - span up to 400' (SF): \$0
Bridge - span more than 400' (SF): \$0
Floating bridge (SF): \$0
Movable bridge (SF): \(\$ 0\)
Lids without Ventilation (SF): \$0
Tunnel (LF): \(\quad \$ 0\)
Pedestrian Bridge (SF): \$0
Railroad bridge replacement (LF): \$0

Asphalt Concrete Pavement, ACP (SF): \$135,634
Portland Cement Concrete Pavement, PCCP (SF): \$0

ROADSIDE DEVELOPMENT
Roadside Dev. Total: \$73,283

Fencing (LF): \(\quad \$ 0\)
\(\begin{array}{rr}\text { Seeding, mulching and fertilizing (Acre): } & \$ 1,927 \\ \text { Roadside Restoration (Lump sum): } & \$ 71,356\end{array}\)

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Cost: Detailed Report}

SR: 002
BARM: \(\mathbf{1 0 . 2 0}\)
EARM:
10.41

Project Title: Goodwin New bridge Option 1 (w/5\% grade) Includes Signalized Intersectio
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}

\section*{Traffic Total:}
\$178,134

\section*{Guardrail (LF): \\ \$5,985}

Guardrail terminal (Each): \(\quad \$ 2,426\)
Concrete barrier(LF):
Impact attenuator (Each): \$0

Signal (Each):
\$150,000
Roundabout (Each): \$0

Illumination (Each): \$0

ITS (Lump sum):
Signing (Lump sum): \$17,839

Cantilever sign bridge (Each): \$0

Sign bridge (Each): \$0

Traffic marking (LF): \$1,884

Raised channelization (LF): \$0

Curb, gutter and sidewalk (LF):

\section*{WETLAND MITIGATION}

Wetland Total: \$0

Category I - High value wetland (Acre):
Category II and III - Medium value wetland (Acre):
Category IV - Low value wetland (Acre):
Stream culvert (Each):
Beach restoration (Each):

\$0

RIGHT OF WAY
ROW Total: \(\quad \$ 89,100\)
Vacant land (Acre): \(\quad \$ 89,100\)
Residential land (Acre): \(\$ 0\)
Commercial land (Acre): \$0

\section*{OTHER ITEMS}

User defined additional items: \$739,284
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate* \\ (2014 dollars)
}
\begin{tabular}{|c|c|c|c|c|}
\hline SR: 002 & Beginning ARM: 10.62 & Ending ARM: 10.83 & Length(mile): 0 & \\
\hline \multicolumn{5}{|l|}{Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersection} \\
\hline \# of NoBuild & s) in NB/EB Direction: 0 & \# of Buil & NB/EB Direction: & 2 \\
\hline \# of NoBuil & s) in SB/WB Direction: 0 & \# of Build & SB/WB Direction: & 0 \\
\hline
\end{tabular}

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 850\) & \(\$ 1,134\) \\
Right Of Way: & \(\$ 80\) & \(\$ 107\) \\
Environmental Mitigation: & \(\$ 280\) & \(\$ 373\) \\
Construction: & \(\$ 9,940\) & \(\$ 13,254\) \\
\hline Total Project Cost: & \(\$ 11,151\) & \(\$ 14,868\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary \\ (2014 dollars)
}

SR:002 Beginning ARM: 10.62 Ending ARM: 10.83 Length(mile): 0.21
Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersection
\begin{tabular}{ccc} 
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: \\
Improvement Type: GP & Terrain Type: \(\mathbf{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$945,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$89,000 & Drainage: & \$122,000 \\
\hline & & Stormwater Detention and Treatment: & \$36,000 \\
\hline CONSTRUCTION / PREPARATION & & Temporary Water Pollution Control: & \\
\hline Mobilization: & \$806,000 & Temporary Water Polution Contol. & \$81,000 \\
\hline Utility Relocation: & \$20,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$274,000 & Roadside Development: & \$72,000 \\
\hline Staging: & \$81,000 & TRAFFIC/TRAIL & \\
\hline Construction Engineering: & \$1,134,000 & TRAFFIC/RALL & \\
\hline & & Traffic/Trail Services and Safety: & \$177,000 \\
\hline STRUCTURES & & & \\
\hline Bridges and Tunnels: & \$4,200,000 & Workzone Traffic Control: & \$403,000 \\
\hline Retaining Walls: & \$2,452,000 & ADDITIONAL ITEMS & \$590,400 \\
\hline Noise Walls: & \$0 & SALES TAX & \$775,000 \\
\hline PAVEMENT & \$134,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 850,000\) & \(\$ 1,134,000\) \\
\hline ROW & \(\$ 80,000\) & \(\$ 107,000\) \\
\hline CN & \(\$ 10,220,000\) & \(\$ 13,627,000\) \\
\hline Total & \(\$ 11,151,000\) & \(\$ 14,868,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 10.62
EARM: 10.83
Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersect
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 1.27 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & \$3 & per SY \\
\hline Roadside cleanup (Lump sum): & 0.70 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 19,010 & \$4 & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 31,684 & \$6 & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & \$60 & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & \$45 & per LF \\
\hline Large culvert (LF): & 70 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 986 & \$9 & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 55,764 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 66,917 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline WALLS & & & \\
\hline Retaining walls (SF): & 32,700 & & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|c|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 6 2}\)
EARM: 10.83

\section*{Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersect}
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rrr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 16,800 & 250 per SF \\
Bridge - span up to \(140^{\prime}(\mathrm{SF}):\) & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF):
44,611

0
\(\$ 3.00\) per SF
\(\$ 5.52\) per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 1.27 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 0.70 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 10.62
EARM: \(\mathbf{1 0 . 8 3}\)
Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersect
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 372 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 1 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 1 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 0.70 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum): & 0.70 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 7,435 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 3.30 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Thursday, March 26, 2015} \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{1 0 . 6 2}\)
EARM:
10.83

Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersect
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|}
\hline GRADING & Grading Total: & \$274,074 \\
\hline & Clear and grub (Acre): & \$887 \\
\hline & Building demolition (Lump sum): & \$0 \\
\hline & Removal of structures (Lump sum): & \$0 \\
\hline & Pavement removal (SY): & \$0 \\
\hline & Roadside cleanup (Lump sum): & \$7,041 \\
\hline & Roadway excavation (CY): & \$76,042 \\
\hline & Gravel borrow/embankment compaction (Ton): & \$190,105 \\
\hline DRAINAGE & Drainage Total: & \$121,526 \\
\hline & Removal of drainage Structure (Each): & \$0 \\
\hline & Conveyance: 24" RCSSP (LF): & \$0 \\
\hline & Catch basin: Type 2-48" (Each): & \$0 \\
\hline & Collection pipe:12" PCSSP (LF): & \$0 \\
\hline & Large culvert (LF): & \$112,655 \\
\hline & Ditch excavation (LF): & \$8,872 \\
\hline STORMWAT & ER DETENTION AND TREATMENT Total: & \$36,135 \\
\hline & Detention pond (SF of new impervious surface): & \$20,075 \\
\hline & ater quality pond (SF of new impervious surface): & \$16,060 \\
\hline & Detention vault (SF of new impervious surface): & \$0 \\
\hline Filtratio & water treatment (SF of new impervious surface): & \$0 \\
\hline WALLS & Walls Total: & \$2,452,500 \\
\hline & Retaining walls (SF): & \$2,452,500 \\
\hline & Noise walls (LF): & \$0 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}


\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{1 0 . 6 2}\)
EARM:
10.83

Project Title: Goodwin New Bridge Option 1 (w-6.5\% grade) Includes Signalized Intersect
\begin{tabular}{rlr} 
\# of NoBuild Lane in NB/EB direction: & \(\mathbf{0}\) & \# of NoBuild Lane in SB/WB direction: \(\mathbf{0}\) \\
\# of Build Lane in NB/EB direction: & 2 & \# of Build Lane in SB/WB direction: \(\mathbf{0}\)
\end{tabular}
TRAFFIC SERVICES AND SAFETY Traffic Total: \$176,688

Guardrail (LF): \$4,833
Guardrail terminal (Each): \$2,394
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \$150,000
Roundabout (Each): \$0
Illumination (Each): \$0
ITS (Lump sum): \(\quad \$ 0\)
Signing (Lump sum): \$17,602
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \$1,859
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION
Wetland Total: \$0

Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre):
\$0
Category IV - Low value wetland (Acre): \$0

Stream culvert (Each): \$0
Beach restoration (Each): \$0
RIGHT OF WAY
ROW Total: \(\quad \$ 89,100\)
Vacant land (Acre): \(\quad \$ 89,100\)
Residential land (Acre): \(\$ 0\)
Commercial land (Acre): \$0
OTHER ITEMS
User defined additional items: \(\quad \$ 590,400\)
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Thursday, March 26, 2015

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
\begin{tabular}{lccc} 
SR: \(\mathbf{0 0 2}\) & Beginning ARM: 10.00 & Ending ARM: 10.25 & Length(mile): \(\mathbf{0 . 2 5}\) \\
Project Title: Goodwin Option 3 & & \\
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & & \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{2}\) \\
\hline
\end{tabular}

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 1,003\) & \(\$ 1,337\) \\
Right Of Way: & \(\$ 80\) & \(\$ 107\) \\
Environmental Mitigation: & \(\$ 319\) & \(\$ 425\) \\
Construction: & \(\$ 11,534\) & \(\$ 15,379\) \\
\hline Total Project Cost: & \(\$ 12,936\) & \(\$ 17,248\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR:002 Beginning ARM: \(\mathbf{1 0 . 0 0}\) Ending ARM: \(\mathbf{1 0 . 2 5}\) Length(mile): \(\mathbf{0 . 2 5}\)
Project Title: Goodwin Option 3
\begin{tabular}{cc} 
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: \(\mathbf{2}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: \\
Improvement Type: GP & Terrain Type: \(\mathbf{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$1,114,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$89,000 & Drainage: & \$137,000 \\
\hline & & Stormwater Detention and Treatment: & \$41,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$950,000 & Temporary Water Pollution Contro: & \$95,000 \\
\hline Utility Relocation: & \$24,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$309,000 & Roadside Development: & \$81,000 \\
\hline Staging: & \$95,000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$1,114,000 & TRAFFIC/rail & \\
\hline & & Traffic/Trail Services and Safety: & \$181,000 \\
\hline \multicolumn{2}{|l|}{STRUCTURES} & & \\
\hline Bridges and Tunnels: & \$7,402,000 & Workzone Traffic Control: & \$475,000 \\
\hline Retaining Walls: & \$900,000 & ADDITIONAL ITEMS & \$300,000 \\
\hline Noise Walls: & \$0 & SALES TAX & \$914,000 \\
\hline PAVEMENT & \$151,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 1,003,000\) & \(\$ 1,337,000\) \\
\hline ROW & \(\$ 80,000\) & \(\$ 107,000\) \\
\hline CN & \(\$ 11,853,000\) & \(\$ 15,804,000\) \\
\hline Total & \(\$ 12,936,000\) & \(\$ 17,248,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 0 0}\)
EARM: \(\mathbf{1 0 . 2 5}\)
Project Title: Goodwin Option 3
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0


\section*{Project Cost: Detailed Report}
SR: 002 BARM: \(\mathbf{1 0 . 0 0}\) EARM: \(\mathbf{1 0 . 2 5}\)

Project Title: Goodwin Option 3
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)


\section*{Project Cost: Detailed Report}


\section*{Project Cost: Detailed Report}

SR: 002 BARM: \(\mathbf{1 0 . 0 0}\) EARM: \(\mathbf{1 0 . 2 5}\)
Project Title: Goodwin Option 3
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
\begin{tabular}{|c|c|}
\hline TRAFFIC SERVICES AND SAFETY Traffic Total: & \$181,345 \\
\hline Guardrail (LF): & \$6,713 \\
\hline Guardrail terminal (Each): & \$2,698 \\
\hline Concrete barrier(LF): & \$0 \\
\hline Impact attenuator (Each): & \$0 \\
\hline Signal (Each): & \$150,000 \\
\hline Roundabout (Each): & \$0 \\
\hline Illumination (Each): & \$0 \\
\hline ITS (Lump sum): & \$0 \\
\hline Signing (Lump sum) & \$19,839 \\
\hline Cantilever sign bridge (Each): & \$0 \\
\hline Sign bridge (Each): & \$0 \\
\hline Traffic marking (LF): & \$2,095 \\
\hline Raised channelization (LF): & \$0 \\
\hline Curb, gutter and sidewalk (LF): & \$0 \\
\hline WETLAND MITIGATION Wetland Total: & \$0 \\
\hline Category I-High value wetland (Acre): & \$0 \\
\hline Category II and III - Medium value wetland (Acre): & \$0 \\
\hline Category IV - Low value wetland (Acre): & \$0 \\
\hline Stream culvert (Each): & \$0 \\
\hline Beach restoration (Each): & \$0 \\
\hline RIGHT OF WAY ROW Total: & \$89,100 \\
\hline Vacant land (Acre): & \$89,100 \\
\hline Residential land (Acre): & \$0 \\
\hline Commercial land (Acre): & \$0 \\
\hline OTHER ITEMS User defined additional items: & \$300,000 \\
\hline \begin{tabular}{l}
These quantities have been calculated by using quantities per lane-mile \\
Date Printed: Thursday, March 26, 20
\end{tabular} & rom WSDOT's past projects. \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 0 0}\)
EARM: 10.25
Project Title: Goodwin Option 3
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rrr} 
Removal of existing bridges (SF): & 0 & 75 per SF \\
Bridge widening (SF): & 29,610 & 250 per SF \\
Bridge - span up to 140' (SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): 0

ROADSIDE DEVELOPMENT
\begin{tabular}{rcc} 
Fencing (LF): & 0 & 15 per LF \\
Seeding, mulching and fertilizing (Acre): & 1.43 & 1,500 per Acre \\
Roadside Restoration (Lump sum): & 0.79 & 100,000 per Lump sum
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{1 0 . 0 0}\)
EARM: 10.25
Project Title: Goodwin Option 3
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
Guardrail (LF): 516

Guardrail terminal (Each): 2
Concrete barrier(LF): 0
Impact attenuator (Each): 0
Signal (Each): \(\quad 1\)
Roundabout (Each): 0
Illumination (Each): 0
ITS (Lump sum): \(\quad 0.79\)
Signing (Lump sum): \(\quad 0.79\)
Cantilever sign bridge (Each): 0
Sign bridge (Each): 0
Traffic marking (LF): \(\quad 8,380\)
Raised channelization (LF): 0
Curb, gutter and sidewalk (LF):
WETLAND MITIGATION
\begin{tabular}{rrr}
\hline Category I - High value wetland (Acre): & 0.00 \\
Category II and III - Medium value wetland (Acre): & 0.00 \\
Category IV - Low value wetland (Acre): & 0.00 \\
Stream culvert (Each): & 0 \\
Beach restoration (Each): & 0 \\
\hline VIGHT OF WAY & \\
\hline Residential land (Acre): & 0.00 \\
Commercial land (Acre): & 0.00
\end{tabular}
\$13 per LF
\$1,700 per Each
\$25 per LF
\$30,000 per Each
\$150,000 per Each
\$0 per Each
\(\$ 8,000\) per Each
\$200,000 per Lump sum
\$25,000 per Lump sum
\$30,000 per Each
\$80,000 per Each
\$0.25 per LF
\$6 per LF
\$32 per LF
\$2,500,000 per Acre
\(\$ 1,900,000\) per Acre
\$300,000 per Acre
\$1,500,000 per Each
\$1,000,000 per Each
\$27,000 per Acre
\$336,000 per Acre
\$368,000 per Acre

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Thursday, March 26, 2015

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
\begin{tabular}{lccc} 
SR: \(\mathbf{0 0 2}\) & Beginning ARM: 52.00 & Ending ARM: 52.30 & Length(mile): 0.30 \\
Project Title: Goodwin RD over US \(\mathbf{2}\) Option \(\mathbf{4}\) & & \\
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: & \(\mathbf{2}\) \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: & \(\mathbf{0}\)
\end{tabular}

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 1,123\) & \(\$ 1,498\) \\
Right Of Way: & \(\$ 112\) & \(\$ 149\) \\
Environmental Mitigation: & \(\$ 574\) & \(\$ 766\) \\
Construction: & \(\$ 12,706\) & \(\$ 16,942\) \\
\hline Total Project Cost: & \(\$ 14,515\) & \(\$ 19,354\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR: 002
Beginning ARM: \(\mathbf{5 2 . 0 0}\)
Ending ARM: 52.30
Length(mile): \(\mathbf{0 . 3 0}\)
Project Title: Goodwin RD over US 2 Option 4
\begin{tabular}{cc} 
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in NB/EB Direction: 2 \\
\# of NoBuild Lane(s) in SB/WB Direction: \(\mathbf{0}\) & \# of Build Lane(s) in SB/WB Direction: \\
Improvement Type: GP & Terrain Type: \(\mathbf{M}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$1,248,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$124,000 & Drainage: & \$281,000 \\
\hline & & Stormwater Detention and Treatment: & \$84,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$1,065,000 & Temporary Water Pollution Control: & \$106,000 \\
\hline Utility Relocation: & \$27,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$847,000 & Roadside Development: & \$167,000 \\
\hline Staging: & \$106,000 & TRAFFIC/TRAII & \\
\hline Construction Engineering: & \$1,248,000 & & \\
\hline & & Traffic/Trail Services and Safety: & \$212,000 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{STRUCTURES}} & & \\
\hline & & Workzone Traffic Control: & \$532,000 \\
\hline Retaining Walls: & \$889,000 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$1,024,000 \\
\hline PAVEMENT & \$310,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 1,123,000\) & \(\$ 1,498,000\) \\
\hline ROW & \(\$ 112,000\) & \(\$ 149,000\) \\
\hline CN & \(\$ 13,280,000\) & \(\$ 17,707,000\) \\
\hline Total & \(\$ 14,515,000\) & \(\$ 19,354,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{5 2 . 0 0}\)
EARM: \(\mathbf{5 2 . 3 0}\)

\section*{Project Title: Goodwin RD over US 2 Option 4}
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0
\begin{tabular}{|c|c|c|c|}
\hline GRADING & Quantity & Unit Cost & Unit \\
\hline Clear and grub (Acre): & 2.93 & \$700 & per Acre \\
\hline Building demolition (Lump sum): & 0.00 & \$10,000 & per Lump sum \\
\hline Removal of structures (Lump sum): & 0.00 & \$25,000 & per Lump sum \\
\hline Pavement removal (SY): & 0 & & per SY \\
\hline Roadside cleanup (Lump sum): & 1.63 & \$10,000 & per Lump sum \\
\hline Roadway excavation (CY): & 60,321 & & per CY \\
\hline Gravel borrow/embankment compaction (Ton): & 97,818 & & per Ton \\
\hline \multicolumn{4}{|l|}{DRAINAGE} \\
\hline Removal of drainage Structure (Each): & 0 & \$650 & per Each \\
\hline Conveyance: 24" RCSSP (LF): & 0 & & per LF \\
\hline Catch basin: Type 2-48" (Each): & 0 & \$3,000 & per Each \\
\hline Collection pipe:12" PCSSP (LF): & 0 & & per LF \\
\hline Large culvert (LF): & 163 & \$1,600 & per LF \\
\hline Ditch excavation (LF): & 2,282 & & per LF \\
\hline \multicolumn{4}{|l|}{STORMWATER DETENTION AND TREATMENT} \\
\hline Detention pond (SF of imperv surface): & 129,120 & \$0.36 & per SF \\
\hline Water quality pond (SF of imperv surface): & 154,944 & \$0.24 & per SF \\
\hline Detention vault (SF of new impervious surface): & 0 & \$3.00 & per SF \\
\hline Filtration water treatment (SF of imperv surface): & 0 & \$0.00 & per SF \\
\hline \multicolumn{4}{|l|}{WALLS} \\
\hline Retaining walls (SF): & 11,850 & 75 & per SF \\
\hline Noise walls (LF): & 0 & 300 & per SF \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Tuesday, March 24, 2015} \\
\hline
\end{tabular}

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{5 2 . 0 0}\)
EARM: \(\mathbf{5 2 . 3 0}\)

\section*{Project Title: Goodwin RD over US 2 Option 4}
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rrr} 
Removal of existing bridges (SF): & 9,000 & 75 per SF \\
Bridge widening (SF): & 0 & 250 per SF \\
Bridge - span up to 140 '(SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 200 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 22,100 & 325 per SF \\
Floating bridge (SF): & 0 & 440 per SF \\
Movable bridge (SF): & 0 & 1,650 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 71,500 per LF \\
Pedestrian Bridge (SF): & 0 & 140 per SF \\
Railroad bridge replacement (LF): & 0 & 11,000 per LF
\end{tabular}

\section*{PAVEMENTS}

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): 0
0

ROADSIDE DEVELOPMENT
\$3.00 per SF
\(\$ 5.52\) per SF

15 per LF
1,500 per Acre
100,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 52.00
EARM: 52.30

\section*{Project Title: Goodwin RD over US 2 Option 4}
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 861 & \$13 & per LF \\
\hline Guardrail terminal (Each): & 3 & \$1,700 & per Each \\
\hline Concrete barrier(LF): & 0 & \$25 & per LF \\
\hline Impact attenuator (Each): & 0 & \$30,000 & per Each \\
\hline Signal (Each): & 1 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 0 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 1.63 & \$200,000 & per Lump sum \\
\hline Signing (Lump sum) & 1.63 & \$25,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$30,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$80,000 & per Each \\
\hline Traffic marking (LF): & 17,216 & \$0.25 & per LF \\
\hline Raised channelization (LF): & 0 & \$6 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 0 & \$32 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline RIGHT OF WAY Vacant land (Acre): & 4.60 & \$27,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$336,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$368,000 & per Acre \\
\hline \multicolumn{4}{|l|}{These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.} \\
\hline \multicolumn{4}{|l|}{Date Printed: Tuesday, March 24, 2015} \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{5 2 . 0 0}\)
EARM: \(\mathbf{5 2 . 3 0}\)

Project Title: Goodwin RD over US 2 Option 4
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
\begin{tabular}{|c|c|c|}
\hline GRADING & Grading Total: & \$846,550 \\
\hline & Clear and grub (Acre): & \$2,054 \\
\hline & Building demolition (Lump sum): & \$0 \\
\hline & Removal of structures (Lump sum): & \$0 \\
\hline & Pavement removal (SY): & \$0 \\
\hline & Roadside cleanup (Lump sum): & \$16,303 \\
\hline & Roadway excavation (CY): & \$241,285 \\
\hline & Gravel borrow/embankment compaction (Ton): & \$586,909 \\
\hline DRAINAGE & Drainage Total: & \$281,390 \\
\hline & Removal of drainage Structure (Each): & \$0 \\
\hline & Conveyance: \(24{ }^{\prime \prime}\) RCSSP (LF): & \$0 \\
\hline & Catch basin: Type 2-48" (Each): & \$0 \\
\hline & Collection pipe:12" PCSSP (LF): & \$0 \\
\hline & Large culvert (LF): & \$260,848 \\
\hline & Ditch excavation (LF): & \$20,542 \\
\hline STORMWAT & R DETENTION AND TREATMENT Total: & \$83,670 \\
\hline & Detention pond (SF of new impervious surface): & \$46,483 \\
\hline & ater quality pond (SF of new impervious surface): & \$37,187 \\
\hline & Detention vault (SF of new impervious surface): & \$0 \\
\hline Filtratio & water treatment (SF of new impervious surface): & \$0 \\
\hline WALLS & Walls Total: & \$888,750 \\
\hline & Retaining walls (SF): & \$888,750 \\
\hline & Noise walls (LF): & \$0 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}

SR: 002 BARM: \(\mathbf{5 2 . 0 0}\) EARM: \(\mathbf{5 2 . 3 0}\)
Project Title: Goodwin RD over US 2 Option 4
\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: \(\mathbf{0}\)
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}

Bridge Total: \$7,857,500
Removal of existing bridges (SF): \(\quad \$ 675,000\)
Bridge widening (SF): ..... \$0
Bridge - span up to 140 (SF): ..... \$0
Bridge - span up to 200' (SF): ..... \$0
Bridge - span up to 400' (SF): ..... \$0
Bridge - span more than 400' (SF): ..... \$7,182,500
Floating bridge (SF): ..... \$0
Movable bridge (SF): ..... \$0
Lids without Ventilation (SF): ..... \$0
Tunnel (LF): ..... \$0
Pedestrian Bridge (SF): ..... \$0
Railroad bridge replacement (LF): ..... \$0
PAVEMENTS\$309,888
Asphalt Concrete Pavement, ACP (SF): ..... \$309,888
Portland Cement Concrete Pavement, PCCP (SF): ..... \$0
ROADSIDE DEVELOPMENT Roadside Dev. Total: ..... \$167,432
Fencing (LF): ..... \$0
Seeding, mulching and fertilizing (Acre): ..... \$4,402Roadside Restoration (Lump sum): \(\quad \$ 163,030\)

\section*{Project Cost: Detailed Report}

\section*{SR: 002 \\ BARM: \(\mathbf{5 2 . 0 0}\) \\ EARM: \(\mathbf{5 2 . 3 0}\)}

Project Title: Goodwin RD over US 2 Option 4
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)

\section*{TRAFFIC SERVICES AND SAFETY Traffic Total: \$211,795}

Guardrail (LF): \$11,190
Guardrail terminal (Each): \$5,543
Concrete barrier(LF): \$0
Impact attenuator (Each): \$0
Signal (Each): \$150,000
Roundabout (Each): \$0
Illumination (Each): \$0
ITS (Lump sum): \(\quad \$ 0\)
Signing (Lump sum): \$40,758
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 4,304\)
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION
Wetland Total: \$0

Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \$0
Beach restoration (Each): \$0

RIGHT OF WAY

OTHER ITEMS

ROW Total:
\$124,200
Vacant land (Acre): \(\quad \$ 124,200\)
Residential land (Acre): \$0
Commercial land (Acre): \$0

\title{
Planning Level Cost Estimate*
}
(2014 dollars)

SR: 002
Beginning ARM: \(\mathbf{5 0 . 7 0}\)
Ending ARM: 51.33
Length(mile): \(\mathbf{0 . 6 3}\)
Project Title: Sunset-Goodwin Road Improvements
\# of NoBuild Lane(s) in NB/EB Direction: \(\mathbf{0}\) \# of Build Lane(s) in NB/EB Direction: 2
\# of NoBuild Lane(s) in SB/WB Direction: 0 \# of Build Lane(s) in SB/WB Direction: 0

PROJECT COST SUMMARY
\begin{tabular}{rcc} 
& \begin{tabular}{c} 
Low \\
(in \$1000s)
\end{tabular} & \begin{tabular}{c} 
High \\
(in \$1000s)
\end{tabular} \\
\hline Preliminary Engineering: & \(\$ 550\) & \(\$ 733\) \\
Right Of Way: & \(\$ 0\) & \(\$ 0\) \\
Environmental Mitigation: & \(\$ 1,602\) & \(\$ 2,136\) \\
Construction: & \(\$ 5,041\) & \(\$ 6,721\) \\
\hline Total Project Cost: & \(\$ 7,193\) & \(\$ 9,590\)
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is \(20 \%\) above the estimated cost.

\footnotetext{
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.
}

\title{
Planning Level Cost Estimate* Summary
}
(2014 dollars)
SR: 002
Beginning ARM: \(\mathbf{5 0 . 7 0}\)
Ending ARM: 51.33
Length(mile): 0.63
Project Title: Sunset-Goodwin Road Improvements
\# of NoBuild Lane(s) in NB/EB Direction: 0
\# of NoBuild Lane(s) in SB/WB Direction: 0
Improvement Type: Freight
\# of Build Lane(s) in NB/EB Direction: 2
\# of Build Lane(s) in SB/WB Direction: 0
Terrain Type: L
\begin{tabular}{|c|c|c|c|}
\hline CONTINGENCY & \$611,000 & ENVIRONMENTAL MITIGATION & \\
\hline RIGHT-OF-WAY & \$0 & Drainage: & \$673,000 \\
\hline & & Stormwater Detention and Treatment: & \$706,000 \\
\hline \multicolumn{2}{|l|}{CONSTRUCTION / PREPARATION} & & \\
\hline Mobilization: & \$250,000 & Temporary Water Pollution Control: & \$150,000 \\
\hline Utility Relocation: & \$150,000 & Wetland Mitigation: & \$0 \\
\hline Grading: & \$727,000 & Roadside Development: & \$251,000 \\
\hline Staging: & \$200,000 & \multicolumn{2}{|l|}{TRAFFIC/TRAIL} \\
\hline Construction Engineering: & \$733,000 & IRAFF/RALL & \\
\hline & & Traffic/Trail Services and Safety: & \$635,000 \\
\hline \multicolumn{2}{|l|}{STRUCTURES} & Workzone Traffic Control: & \$351,000 \\
\hline Bridges and Tunnels: & \$0 & & \\
\hline Retaining Walls: & \$0 & ADDITIONAL ITEMS & \$0 \\
\hline Noise Walls: & \$0 & SALES TAX & \$538,000 \\
\hline PAVEMENT & \$2,016,000 & & \\
\hline
\end{tabular}

Project Cost Summary:
\begin{tabular}{|c|r|r|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{|c|}{ Low } & \multicolumn{1}{|c|}{ High } \\
\hline PE & \(\$ 550,000\) & \(\$ 733,000\) \\
\hline ROW & \(\$ 0\) & \(\$ 0\) \\
\hline CN & \(\$ 6,643,000\) & \(\$ 8,857,000\) \\
\hline Total & \(\$ 7,193,000\) & \(\$ 9,590,000\) \\
\hline
\end{tabular}

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is \(10 \%\) below and high is 20\% above the estimated cost.
* This estimate is based on little or no design work, and hence intended for use for planning purposes only.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: 50.70
EARM: 51.33
\begin{tabular}{lll} 
Project Title: Sunset-Goodwin Road Improvements \\
\# of NoBuild Lane in NB/EB direction: & \(\mathbf{0}\) & \# of NoBuild Lane in SB/WB direction: \(\mathbf{0}\) \\
\# of Build Lane in NB/EB direction: & \(\mathbf{2}\) & \# of Build Lane in SB/WB direction: \(\mathbf{0}\)
\end{tabular}


\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{5 0 . 7 0}\)
EARM: 51.33
Project Title: Sunset-Goodwin Road Improvements
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{BRIDGES}
\begin{tabular}{rlr} 
Removal of existing bridges (SF): & 0 & 50 per SF \\
Bridge widening (SF): & 0 & 300 per SF \\
Bridge - span up to 140 '(SF): & 0 & 150 per SF \\
Bridge - span up to 200' (SF): & 0 & 170 per SF \\
Bridge - span up to 400' (SF): & 0 & 300 per SF \\
Bridge - span more than 400' (SF): & 0 & 300 per SF \\
Floating bridge (SF): & 0 & 480 per SF \\
Movable bridge (SF): & 0 & 1,500 per SF \\
Lids without Ventilation (SF): & 0 & 150 per SF \\
Tunnel (LF): & 0 & 65,000 per LF \\
Pedestrian Bridge (SF): & 0 & 150 per SF \\
Railroad bridge replacement (LF): & 0 & 10,000 per LF
\end{tabular}

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): \(\quad 0 \quad \$ 27.00\) per SF
ROADSIDE DEVELOPMENT
\begin{tabular}{rl} 
Fencing (LF): & 909 \\
Seeding, mulching and fertilizing (Acre): & 4.55 \\
Roadside Restoration (Lump sum): & 1.52
\end{tabular}
19 per LF
1,500 per Acre
150,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\section*{Project Quantity and Unit Cost}

SR: 002
BARM: \(\mathbf{5 0 . 7 0}\)
EARM: 51.33

\section*{Project Title: Sunset-Goodwin Road Improvements}
\# of NoBuild Lane in NB/EB direction: \(0 \quad\) \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

\section*{TRAFFIC SERVICES AND SAFETY}
\begin{tabular}{|c|c|c|c|}
\hline Guardrail (LF): & 1,600 & \$20 & per LF \\
\hline Guardrail terminal (Each): & 24 & \$1,800 & per Each \\
\hline Concrete barrier(LF): & 800 & \$35 & per LF \\
\hline Impact attenuator (Each): & 1 & \$25,000 & per Each \\
\hline Signal (Each): & 0 & \$150,000 & per Each \\
\hline Roundabout (Each): & 0 & \$0 & per Each \\
\hline Illumination (Each): & 36 & \$8,000 & per Each \\
\hline ITS (Lump sum): & 1.52 & \$165,000 & per Lump sum \\
\hline Signing (Lump sum) & 1.52 & \$30,000 & per Lump sum \\
\hline Cantilever sign bridge (Each): & 0 & \$50,000 & per Each \\
\hline Sign bridge (Each): & 0 & \$185,000 & per Each \\
\hline Traffic marking (LF): & 16,000 & \$1.00 & per LF \\
\hline Raised channelization (LF): & 2,273 & \$19 & per LF \\
\hline Curb, gutter and sidewalk (LF): & 2,273 & \$46 & per LF \\
\hline WETLAND MITIGATION & & & \\
\hline Category I - High value wetland (Acre): & 0.00 & \$2,500,000 & per Acre \\
\hline Category II and III - Medium value wetland (Acre): & 0.00 & \$1,900,000 & per Acre \\
\hline Category IV - Low value wetland (Acre): & 0.00 & \$300,000 & per Acre \\
\hline Stream culvert (Each): & 0 & \$1,500,000 & per Each \\
\hline Beach restoration (Each): & 0 & \$1,000,000 & per Each \\
\hline \begin{tabular}{l}
RIGHT OF WAY \\
Vacant land (Acre):
\end{tabular} & 0.00 & \$616,000 & per Acre \\
\hline Residential land (Acre): & 0.00 & \$2,318,000 & per Acre \\
\hline Commercial land (Acre): & 0.00 & \$4,140,000 & per Acre \\
\hline
\end{tabular}

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Date Printed: Tuesday, March 24, 2015

\section*{Project Cost: Detailed Report}
SR: 002
BARM:
50.70
EARM: 51.33

Project Title: Sunset-Goodwin Road Improvements
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
\begin{tabular}{|c|c|c|}
\hline GRADING & Grading Total: & \$726,818 \\
\hline & Clear and grub (Acre): & \$33,636 \\
\hline & Building demolition (Lump sum): & \$106,061 \\
\hline & Removal of structures (Lump sum): & \$121,212 \\
\hline & Pavement removal (SY): & \$0 \\
\hline & Roadside cleanup (Lump sum): & \$7,576 \\
\hline & Roadway excavation (CY): & \$166,667 \\
\hline & orrow/embankment compaction (Ton): & \$291,667 \\
\hline DRAINAGE & Drainage Total: & \$673,205 \\
\hline & Removal of drainage Structure (Each): & \$2,727 \\
\hline & Conveyance: 24" RCSSP (LF): & \$169,697 \\
\hline & Catch basin: Type 2-48" (Each): & \$27,273 \\
\hline & Collection pipe:12" PCSSP (LF): & \$20,455 \\
\hline & Large culvert (LF): & \$363,636 \\
\hline & Ditch excavation (LF): & \$89,417 \\
\hline STORMWA & TION AND TREATMENT Total: & \$705,960 \\
\hline & n pond (SF of new impervious surface): & \$82,800 \\
\hline & y pond (SF of new impervious surface): & \$39,600 \\
\hline & n vault (SF of new impervious surface): & \$531,000 \\
\hline Filtratio & atment (SF of new impervious surface): & \$52,560 \\
\hline WALLS & Walls Total: & \$0 \\
\hline & Retaining walls (SF): & \$0 \\
\hline & Noise walls (LF): & \$0 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002
BARM: \(\mathbf{5 0 . 7 0}\)
EARM: 51.33

Project Title: Sunset-Goodwin Road Improvements
\(\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
\begin{tabular}{|c|c|c|}
\hline BRIDGES & Bridge Total: & \$0 \\
\hline & Removal of existing bridges (SF): & \$0 \\
\hline & Bridge widening (SF): & \$0 \\
\hline & Bridge - span up to 140' (SF): & \$0 \\
\hline & Bridge - span up to 200' (SF): & \$0 \\
\hline & Bridge - span up to 400' (SF): & \$0 \\
\hline & Bridge - span more than 400' (SF): & \$0 \\
\hline & Floating bridge (SF): & \$0 \\
\hline & Movable bridge (SF): & \$0 \\
\hline & Lids without Ventilation (SF): & \$0 \\
\hline & Tunnel (LF): & \$0 \\
\hline & Pedestrian Bridge (SF): & \$0 \\
\hline & Railroad bridge replacement (LF): & \$0 \\
\hline PAVEMENTS & Pavement Total: & \$2,016,000 \\
\hline & Asphalt Concrete Pavement, ACP (SF): & \$2,016,000 \\
\hline & Cement Concrete Pavement, PCCP (SF): & \$0 \\
\hline ROADSIDE & MENT Roadside Dev. Total: & \$251,364 \\
\hline & Fencing (LF): & \$17,273 \\
\hline & Seeding, mulching and fertilizing (Acre): & \$6,818 \\
\hline & Roadside Restoration (Lump sum): & \$227,273 \\
\hline
\end{tabular}

\section*{Project Cost: Detailed Report}
SR: 002
BARM:
50.70
EARM: 51.33

Project Title: Sunset-Goodwin Road Improvements
\(\begin{array}{rrr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}\)
TRAFFIC SERVICES AND SAFETY Traffic Total: \$634,977
Guardrail (LF): \$32,000
Guardrail terminal (Each): \$43,636
Concrete barrier(LF): \$28,000
Impact attenuator (Each): \(\quad \$ 31,250\)
Signal (Each): \$0
Roundabout (Each): \$0
Illumination (Each): \$290,909
ITS (Lump sum): \(\quad \$ 0\)
Signing (Lump sum): \$45,455
Cantilever sign bridge (Each): \$0
Sign bridge (Each): \$0
Traffic marking (LF): \(\quad \$ 16,000\)
Raised channelization (LF): \$43,182
Curb, gutter and sidewalk (LF): \$104,545
WETLAND MITIGATION
Wetland Total: \$0

Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \$0
Beach restoration (Each): \$0
RIGHT OF WAY
ROW Total: \$0
Vacant land (Acre): \(\quad \$ 0\)
Residential land (Acre): \$0
Commercial land (Acre): \$0
OTHER ITEMS
User defined additional items:
\$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

\title{
Planning Level Cost Estimate*
}
(2014 dollars)
```

SR:002 Beginning ARM: 51.33
Project Title: Goodwin north of sunset

of NoBuild Lane(s) in NB/EB Direction: 0

of NoBuild Lane(s) in SB/WB Direction: 0

PROJECT COST SUMMARY

	Low (in \$1000s)	High (in \$1000s)
Preliminary Engineering:	$\$ 126$	$\$ 168$
Right Of Way:	$\$ 0$	$\$ 0$
Environmental Mitigation:	$\$ 365$	$\$ 487$
Construction:	$\$ 1,215$	$\$ 1,620$
Total Project Cost:	$\$ 1,706$	$\$ 2,275$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20% above the estimated cost.

[^0]
Planning Level Cost Estimate* Summary

(2014 dollars)

SR: $\mathbf{0 0 2}$	Beginning ARM: 51.33	Ending ARM: 51.47	Length(mile): $\mathbf{0 . 1 4}$
Project Title: Goodwin north of sunset			
\# of NoBuild Lane(s) in NB/EB Direction: $\mathbf{0}$			
\# of NoBuild Lane(s) in SB/WB Direction: $\mathbf{0}$	\# of Build Lane(s) in NB/EB Direction:	$\mathbf{2}$	
Improvement Type: Freight	\# of Build Lane(s) in SB/WB Direction:	$\mathbf{0}$	
		Terrain Type: \mathbf{L}	

CONTINGENCY	\$140,000	ENVIRONMENTAL MITIGATION	
RIGHT-OF-WAY	\$0	Drainage:	\$154,000
		Stormwater Detention and Treatment:	\$161,000
CONSTRUCTION / PREPARATION			
Mobilization:	\$57,000	Temporary Water Pollution Control:	\$34,000
Utility Relocation:	\$34,000	Wetland Mitigation:	\$0
Grading:	\$166,000	Roadside Development:	\$57,000
Staging:	\$46,000	TRAFFIC/TRAIL	
Construction Engineering:	\$237,000		
		Traffic/Trail Services and Safety:	\$145,000
STRUCTURES		Workzone Traffic Control:	\$80,000
Bridges and Tunnels:	\$0		
Retaining Walls:	\$0	ADDITIONAL ITEMS	\$0
Noise Walls:	\$0	SALES TAX	\$123,000
PAVEMENT	\$461,000		

Project Cost Summary:

	Low	High
PE	$\$ 126,000$	$\$ 168,000$
ROW	$\$ 0$	$\$ 0$
CN	$\$ 1,580,000$	$\$ 2,107,000$
Total	$\$ 1,706,000$	$\$ 2,275,000$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20% above the estimated cost.

[^1]
Project Cost: Detailed Report

SR: 002 BARM: 51.33 EARM: $\mathbf{5 1 . 4 7}$
Project Title: Goodwin north of sunset
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 2 \# of NoBuild Lane in SB/WB direction: $\mathbf{0}$
\# of Build Lane in SB/WB direction: $\mathbf{0}$

GRADING

Grading Total: \$166,114

Clear and grub (Acre): $\quad \$ 7,688$
Building demolition (Lump sum): $\quad \$ 24,240$
Removal of structures (Lump sum): \$27,703
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \$1,731
Roadway excavation (CY): $\quad \$ 38,092$
Gravel borrow/embankment compaction (Ton): \$66,660
Drainage Total: $\quad \$ 153,860$
Removal of drainage Structure (Each): \$623
Conveyance: 24" RCSSP (LF): $\quad \$ 38,784$
Catch basin: Type 2-48" (Each): \$6,233
Collection pipe:12" PCSSP (LF): \$4,675
Large culvert (LF): $\quad \$ 83,109$
Ditch excavation (LF): \$20,436
STORMWATER DETENTION AND TREATMENT Total: \$161,347
Detention pond (SF of new impervious surface): \$18,924
Water quality pond (SF of new impervious surface): \$9,051
Detention vault (SF of new impervious surface): \$121,360
Filtration water treatment (SF of new impervious surface): \$12,013

WALLS	Walls Total:	$\$ 0$
	Retaining walls (SF):	$\$ 0$
	Noise walls (LF):	$\$ 0$

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Monday, March 30, 2015

Project Cost: Detailed Report

[^2]
Project Cost: Detailed Report

SR: 002 BARM: $\mathbf{5 1 . 3 3}$ EARM: 51.47	
Project Title: Goodwin north of sunset \# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lan \# of Build Lane in NB/EB direction: 2 \# of Build Lan	in SB/WB direction: 0 in SB/WB direction: 0
TRAFFIC SERVICES AND SAFETY Traffic Total:	\$144,981
Guardrail (LF):	\$7,314
Guardrail terminal (Each):	\$9,973
Concrete barrier(LF):	\$6,399
Impact attenuator (Each):	\$7,000
Signal (Each):	\$0
Roundabout (Each):	\$0
Illumination (Each):	\$66,487
ITS (Lump sum):	\$0
Signing (Lump sum) :	\$10,389
Cantilever sign bridge (Each):	\$0
Sign bridge (Each):	\$0
Traffic marking (LF):	\$3,657
Raised channelization (LF):	\$9,869
Curb, gutter and sidewalk (LF):	\$23,894
WETLAND MITIGATION Wetland Total:	\$0
Category I-High value wetland (Acre):	\$0
Category II and III - Medium value wetland (Acre):	\$0
Category IV - Low value wetland (Acre):	\$0
Stream culvert (Each):	\$0
Beach restoration (Each):	\$0
RIGHT OF WAY ROW Total:	\$0
Vacant land (Acre):	\$0
Residential land (Acre):	\$0
Commercial land (Acre):	\$0
OTHER ITEMS User defined additional items:	\$0
These quantities have been calculated by using quantities per lane-mile Date Printed: Monday, March 30, 2015	from WSDOT's past projects.

Project Quantity and Unit Cost

SR: 002
BARM: 51.33
Project Title: Goodwin north of sunset
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
EARM: $\mathbf{5 1 . 4 7}$
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: $\mathbf{0}$

GRADING	Quantity	Unit Cost	Unit
Clear and grub (Acre):	1.04	\$7,400	per Acre
Building demolition (Lump sum):	0.35	\$70,000	per Lump sum
Removal of structures (Lump sum):	0.35	\$80,000	per Lump sum
Pavement removal (SY):	0		per SY
Roadside cleanup (Lump sum):	0.35	\$5,000	per Lump sum
Roadway excavation (CY):	3,463	\$11	per CY
Gravel borrow/embankment compaction (Ton):	6,060	\$11	per Ton
DRAINAGE			
Removal of drainage Structure (Each):	2	\$300	per Each
Conveyance: 24" RCSSP (LF):	554		per LF
Catch basin: Type 2-48" (Each):	2	\$3,000	per Each
Collection pipe:12" PCSSP (LF):	104		per LF
Large culvert (LF):	52	\$1,600	per LF
Ditch excavation (LF):	1,281	\$16	per LF
STORMWATER DETENTION AND TREATMENT			
Detention pond (SF of imperv surface):	13,713	\$1.38	per SF
Water quality pond (SF of imperv surface):	16,456	\$0.55	per SF
Detention vault (SF of new impervious surface):	13,713	\$8.85	per SF
Filtration water treatment (SF of imperv surface):	16,456	\$0.73	per SF
WALLS			
Retaining walls (SF):	0	110	per SF
Noise walls (LF):	0	335	per SF
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.			
Date Printed: Monday, March 30, 2015			

Project Quantity and Unit Cost

SR: 002
BARM: 51.33
EARM: 51.47
Project Title: Goodwin north of sunset
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

BRIDGES

Removal of existing bridges (SF):	0	50 per SF
Bridge widening (SF):	0	300 per SF
Bridge - span up to 140 '(SF):	0	150 per SF
Bridge - span up to 200' (SF):	0	170 per SF
Bridge - span up to 400' (SF):	0	300 per SF
Bridge - span more than 400' (SF):	0	300 per SF
Floating bridge (SF):	0	480 per SF
Movable bridge (SF):	0	1,500 per SF
Lids without Ventilation (SF):	0	150 per SF
Tunnel (LF):	0	65,000 per LF
Pedestrian Bridge (SF):	0	150 per SF
Railroad bridge replacement (LF):	0	10,000 per LF

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF): $\quad 0 \quad \$ 27.00$ per SF
ROADSIDE DEVELOPMENT

Fencing (LF):	208
Seeding, mulching and fertilizing (Acre):	1.04
Roadside Restoration (Lump sum):	0.35

19 per LF
1,500 per Acre
150,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Quantity and Unit Cost

SR: 002
BARM: 51.33
EARM: 51.47
Project Title: Goodwin north of sunset
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

TRAFFIC SERVICES AND SAFETY

Guardrail (LF):	366	\$20	per LF
Guardrail terminal (Each):	6	\$1,800	per Each
Concrete barrier(LF):	183	\$35	per LF
Impact attenuator (Each):	0	\$25,000	per Each
Signal (Each):	0	\$150,000	per Each
Roundabout (Each):	0	\$0	per Each
Illumination (Each):	8	\$8,000	per Each
ITS (Lump sum):	0.35	\$165,000	per Lump sum
Signing (Lump sum):	0.35	\$30,000	per Lump sum
Cantilever sign bridge (Each):	0	\$50,000	per Each
Sign bridge (Each):	0	\$185,000	per Each
Traffic marking (LF):	3,657	\$1.00	per LF
Raised channelization (LF):	519	\$19	per LF
Curb, gutter and sidewalk (LF):	519	\$46	per LF
WETLAND MITIGATION			
Category I - High value wetland (Acre):	0.00	\$2,500,000	per Acre
Category II and III - Medium value wetland (Acre):	0.00	\$1,900,000	per Acre
Category IV - Low value wetland (Acre):	0.00	\$300,000	per Acre
Stream culvert (Each):	0	\$1,500,000	per Each
Beach restoration (Each):	0	\$1,000,000	per Each
RIGHT OF WAY Vacant land (Acre):	0.00	\$616,000	per Acre
Residential land (Acre):	0.00	\$2,318,000	per Acre
Commercial land (Acre):	0.00	\$4,140,000	per Acre
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.			
Date Printed: Monday, March 30, 2015			

Planning Level Cost Estimate*

(2014 dollars)

SR:002 Beginning ARM: 51.47 Ending ARM: 51.96 Length(mile): $\mathbf{0 . 4 9}$
Project Title: Sunset \& Evergreen Dr.

\# of NoBuild Lane(s) in NB/EB Direction: $\mathbf{0}$	\# of Build Lane(s) in NB/EB Direction:	$\mathbf{2}$
\# of NoBuild Lane(s) in SB/WB Direction: $\mathbf{0}$	\# of Build Lane(s) in SB/WB Direction:	$\mathbf{0}$

PROJECT COST SUMMARY

	Low (in \$1000s)	High (in \$1000s)
Preliminary Engineering:	$\$ 457$	$\$ 610$
Right Of Way:	$\$ 0$	$\$ 0$
Environmental Mitigation:	$\$ 1,332$	$\$ 1,776$
Construction:	$\$ 4,188$	$\$ 5,584$
Total Project Cost:	$\$ 5,977$	$\$ 7,969$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20% above the estimated cost.

[^3]
Planning Level Cost Estimate* Summary

(2014 dollars)
SR:002 Beginning ARM: 51.47 Ending ARM: 51.96 Length(mile): 0.49
Project Title: Sunset \& Evergreen Dr.
\# of NoBuild Lane(s) in NB/EB Direction: 0
\# of NoBuild Lane(s) in SB/WB Direction: $\mathbf{0}$
\# of Build Lane(s) in NB/EB Direction: 2
\# of Build Lane(s) in SB/WB Direction: $\mathbf{0}$
Terrain Type: L
Improvement Type: Freight

CONTINGENCY	\$508,000	ENVIRONMENTAL MITIGATION	
RIGHT-OF-WAY	\$0	Drainage:	\$559,000
		Stormwater Detention and Treatment:	\$587,000
CONSTRUCTION / PREPARATION			
Mobilization:	\$208,000	Temporary Water Pollution Contro:	\$125,000
Utility Relocation:	\$125,000	Wetland Mitigation:	\$0
Grading:	\$604,000	Roadside Development:	\$209,000
Staging:	\$166,000	TPAFFIC/TPAIL	
Construction Engineering:	\$609,000		
		Traffic/Trail Services and Safety:	\$528,000
STRUCTURES		Workzone Traffic Control:	\$291,000
Bridges and Tunnels:	\$0		
Retaining Walls:	\$0	ADDITIONAL ITEMS	\$0
Noise Walls:	\$0	SALES TAX	\$447,000
PAVEMENT	\$1,675,000		

Project Cost Summary:

	Low	High
PE	$\$ 457,000$	$\$ 610,000$
ROW	$\$ 0$	$\$ 0$
CN	$\$ 5,520,000$	$\$ 7,360,000$
Total	$\$ 5,977,000$	$\$ 7,969,000$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20\% above the estimated cost.

[^4]
Project Quantity and Unit Cost

SR: 002
BARM: 51.47
EARM: $\mathbf{5 1 . 9 6}$
Project Title: Sunset \& Evergreen Dr.
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 0

GRADING	Quantity	Unit Cost	Unit
Clear and grub (Acre):	3.78	\$7,400	per Acre
Building demolition (Lump sum):	1.26	\$70,000	per Lump sum
Removal of structures (Lump sum):	1.26	\$80,000	per Lump sum
Pavement removal (SY):	0		per SY
Roadside cleanup (Lump sum):	1.26	\$5,000	per Lump sum
Roadway excavation (CY):	12,589	\$11	per CY
Gravel borrow/embankment compaction (Ton):	22,030	\$11	per Ton
DRAINAGE			
Removal of drainage Structure (Each):	8	\$300	per Each
Conveyance: 24" RCSSP (LF):	2,014		per LF
Catch basin: Type 2-48" (Each):	8	\$3,000	per Each
Collection pipe:12" PCSSP (LF):	378		per LF
Large culvert (LF):	189	\$1,600	per LF
Ditch excavation (LF):	4,658	\$16	per LF
STORMWATER DETENTION AND TREATMENT			
Detention pond (SF of imperv surface):	49,851	\$1.38	per SF
Water quality pond (SF of imperv surface):	59,821	\$0.55	per SF
Detention vault (SF of new impervious surface):	49,851	\$8.85	per SF
Filtration water treatment (SF of imperv surface):	59,821	\$0.73	per SF
WALLS			
Retaining walls (SF):	0	110	per SF
Noise walls (LF):	0	335	per SF
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.			
Date Printed: Monday, March 30, 2015			

Project Quantity and Unit Cost

SR: 002
BARM: 51.47
EARM: $\mathbf{5 1 . 9 6}$
Project Title: Sunset \& Evergreen Dr.
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

BRIDGES

Removal of existing bridges (SF):	0	50 per SF
Bridge widening (SF):	0	300 per SF
Bridge - span up to 140 '(SF):	0	150 per SF
Bridge - span up to 200' (SF):	0	170 per SF
Bridge - span up to 400' (SF):	0	300 per SF
Bridge - span more than 400' (SF):	0	300 per SF
Floating bridge (SF):	0	480 per SF
Movable bridge (SF):	0	1,500 per SF
Lids without Ventilation (SF):	0	150 per SF
Tunnel (LF):	0	65,000 per LF
Pedestrian Bridge (SF):	0	150 per SF
Railroad bridge replacement (LF):	0	10,000 per LF

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):
PCC Pavement (SF):

ROADSIDE DEVELOPMENT

$$
\begin{aligned}
& \$ 21.00 \text { per } \mathrm{SF} \\
& \$ 27.00 \text { per } \mathrm{SF}
\end{aligned}
$$

0

19 per LF
1,500 per Acre
150,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Quantity and Unit Cost

SR: 002
BARM: 51.47
EARM: 51.96
Project Title: Sunset \& Evergreen Dr.
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

TRAFFIC SERVICES AND SAFETY

Guardrail (LF):	1,329	\$20	per LF
Guardrail terminal (Each):	20	\$1,800	per Each
Concrete barrier(LF):	665	\$35	per LF
Impact attenuator (Each):	1	\$25,000	per Each
Signal (Each):	0	\$150,000	per Each
Roundabout (Each):	0	\$0	per Each
Illumination (Each):	30	\$8,000	per Each
ITS (Lump sum):	1.26	\$165,000	per Lump sum
Signing (Lump sum)	1.26	\$30,000	per Lump sum
Cantilever sign bridge (Each):	0	\$50,000	per Each
Sign bridge (Each):	0	\$185,000	per Each
Traffic marking (LF):	13,294	\$1.00	per LF
Raised channelization (LF):	1,888	\$19	per LF
Curb, gutter and sidewalk (LF):	1,888	\$46	per LF
WETLAND MITIGATION			
Category I - High value wetland (Acre):	0.00	\$2,500,000	per Acre
Category II and III - Medium value wetland (Acre):	0.00	\$1,900,000	per Acre
Category IV - Low value wetland (Acre):	0.00	\$300,000	per Acre
Stream culvert (Each):	0	\$1,500,000	per Each
Beach restoration (Each):	0	\$1,000,000	per Each
RIGHT OF WAY Vacant land (Acre):	0.00	\$616,000	per Acre
Residential land (Acre):	0.00	\$2,318,000	per Acre
Commercial land (Acre):	0.00	\$4,140,000	per Acre
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.			
Date Printed: Monday, March 30, 2015			

Project Cost: Detailed Report

SR: 002 BARM: $\mathbf{5 1 . 4 7}$ EARM: $\mathbf{5 1 . 9 6}$
Project Title: Sunset \& Evergreen Dr.
\# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 2 \# of NoBuild Lane in SB/WB direction: $\mathbf{0}$
\# of Build Lane in SB/WB direction: $\mathbf{0}$

GRADING

Grading Total: $\quad \$ 603,876$

Clear and grub (Acre): $\quad \$ 27,947$
Building demolition (Lump sum): $\quad \$ 88,120$
Removal of structures (Lump sum): \$100,709
Pavement removal (SY): \$0
Roadside cleanup (Lump sum): \$6,294
Roadway excavation (CY): \$138,475
Gravel borrow/embankment compaction (Ton): \$242,331
Drainage Total:
\$559,331
Removal of drainage Structure (Each): \$2,266
Conveyance: 24" RCSSP (LF): \$140,992
Catch basin: Type 2-48" (Each): \$22,660
Collection pipe:12" PCSSP (LF): \$16,995
Large culvert (LF): $\quad \$ 302,127$
Ditch excavation (LF): \$74,292
STORMWATER DETENTION AND TREATMENT Total: \$586,546
Detention pond (SF of new impervious surface): \$68,794
Water quality pond (SF of new impervious surface): \$32,902
Detention vault (SF of new impervious surface): \$441,180
Filtration water treatment (SF of new impervious surface): \$43,669

WALLS Walls Total:	$\$ 0$	
Retaing walls (SF):	$\$ 0$	
	Noise walls (LF):	$\$ 0$

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Monday, March 30, 2015

Project Cost: Detailed Report

[^5]
Project Cost: Detailed Report

SR: 002 BARM: $\mathbf{5 1 . 4 7}$ EARM: $\mathbf{5 1 . 9 6}$
Project Title: Sunset \& Evergreen Dr.
$\begin{array}{rlr}\text { \# of NoBuild Lane in NB/EB direction: } & \mathbf{0} & \text { \# of NoBuild Lane in SB/WB direction: } \mathbf{0} \\ \text { \# of Build Lane in NB/EB direction: } & 2 & \text { \# of Build Lane in SB/WB direction: } \mathbf{0}\end{array}$

TRAFFIC SERVICES AND SAFETY Traffic Total:	\$528,106
Guardrail (LF):	\$26,587
Guardrail terminal (Each):	\$36,255
Concrete barrier(LF):	\$23,264
Impact attenuator (Each):	\$26,500
Signal (Each):	\$0
Roundabout (Each):	\$0
Illumination (Each):	\$241,701
ITS (Lump sum):	\$0
Signing (Lump sum)	\$37,766
Cantilever sign bridge (Each):	\$0
Sign bridge (Each):	\$0
Traffic marking (LF):	\$13,294
Raised channelization (LF):	\$35,878
Curb, gutter and sidewalk (LF):	\$86,861
WETLAND MITIGATION Wetland Total:	\$0
Category I - High value wetland (Acre):	\$0
Category II and III - Medium value wetland (Acre):	\$0
Category IV - Low value wetland (Acre):	\$0
Stream culvert (Each):	\$0
Beach restoration (Each):	\$0
RIGHT OF WAY ROW Total:	\$0
Vacant land (Acre):	\$0
Residential land (Acre):	\$0
Commercial land (Acre):	\$0
OTHER ITEMS User defined additional items:	\$0
These quantities have been calculated by using quantities per lane-mile Date Printed: Monday, March 30, 2015	rom WSDOT's past projects.

Planning Level Cost Estimate*
 (2014 dollars)

| SR:002 Beginning ARM: 50.10 | Ending ARM: 50.80 | Length(mile): 0.70 | |
| :--- | :---: | :---: | :---: | :---: |
| Project Title: Nahahum Canyon Road | | | |
| \# of NoBuild Lane(s) in NB/EB Direction: $\mathbf{0}$ | | \# of Build Lane(s) in NB/EB Direction: | $\mathbf{2}$ |
| \# of NoBuild Lane(s) in SB/WB Direction: $\mathbf{0}$ | | \# of Build Lane(s) in SB/WB Direction: | $\mathbf{0}$ |

PROJECT COST SUMMARY

	Low (in $\$ 1000$ s)	High (in \$1000s)
Preliminary Engineering:	$\$ 140$	$\$ 186$
Right Of Way:	$\$ 0$	$\$ 0$
Environmental Mitigation:	$\$ 424$	$\$ 565$
Construction:	$\$ 1,322$	$\$ 1,763$
Total Project Cost:	$\$ 1,886$	$\$ 2,514$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20% above the estimated cost.

[^6]
Planning Level Cost Estimate* Summary
 (2014 dollars)

SR: 002
Beginning ARM: $\mathbf{5 0 . 1 0}$
Ending ARM: $\mathbf{5 0 . 8 0}$
Length(mile): $\mathbf{0 . 7 0}$
Project Title: Nahahum Canyon Road

\# of NoBuild Lane(s) in NB/EB Direction: 0		\# of Build Lane(s) in NB/EB Direction:	2
\# of NoBuild Lane(s) in SB/WB Direction:	0	\# of Build Lane(s) in SB/WB Direction:	0
Improvement Type: Misc		Terrain Type: \mathbf{R}	
CONTINGENCY	\$155,000	ENVIRONMENTAL MITIGATION	
RIGHT-OF-WAY	\$0	Drainage:	\$242,000
CONSTRUCTION / PREPARATION		Stormwater Detention and Treatment:	\$72,000
Mobilization:	\$132,000	Temporary Water Pollution Control:	\$13,000
Utility Relocation:	\$3,000	Wetland Mitigation:	\$0
Grading:	\$545,000	Roadside Development:	\$144,000
Staging:	\$13,000		
Construction Engineering:	\$263,000	TRAFFIC/TRAIL	
		Traffic/Trail Services and Safety:	\$53,000
STRUCTURES			
Bridges and Tunnels:	\$0	Workzone Trafic Contro:	\$66,000
Retaining Walls:	\$0	ADDITIONAL ITEMS	\$0
Noise Walls:	\$0	SALES TAX	\$127,000
PAVEMENT	\$266,000		

Project Cost Summary:

	Low	High
PE	$\$ 140,000$	$\$ 186,000$
ROW	$\$ 0$	$\$ 0$
CN	$\$ 1,746,000$	$\$ 2,328,000$
Total	$\$ 1,886,000$	$\$ 2,514,000$

Note: Generally planning estimates are done with no design information. Therefore, many unknown factors may lead to changes in the estimates later on. This is why a range approach has been used in reporting project costs. Low is 10% below and high is 20% above the estimated cost.

[^7]
Project Quantity and Unit Cost

SR: 002 BARM: 50.10 E	EARM: $\mathbf{5 0 . 8 0}$		
Project Title: Nahahum Canyon Road \# of NoBuild Lane in NB/EB direction: 0 \# of Build Lane in NB/EB direction: 2	\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0		
GRADING	Quantity	Unit Cost	Unit
Clear and grub (Acre):	2.52	\$700	per Acre
Building demolition (Lump sum):	0.00	\$10,000	per Lump sum
Removal of structures (Lump sum):	0.00	\$25,000	per Lump sum
Pavement removal (SY):	0	\$3	per SY
Roadside cleanup (Lump sum):	1.40	\$10,000	per Lump sum
Roadway excavation (CY):	37,800	\$4	per CY
̇̀ravel borrow/embankment compaction (Ton):	63,000	\$6	per Ton
DRAINAGE			
Removal of drainage Structure (Each):	0	\$650	per Each
Conveyance: 24" RCSSP (LF):	0	\$60	per LF
Catch basin: Type 2-48" (Each):	0	\$3,000	per Each
Collection pipe:12" PCSSP (LF):	0		per LF
Large culvert (LF):	140	\$1,600	per LF
Ditch excavation (LF):	1,960		per LF
STORMWATER DETENTION AND TREATMENT			
Detention pond (SF of imperv surface):	110,880	\$0.36	per SF
Water quality pond (SF of imperv surface):	133,056	\$0.24	per SF
Detention vault (SF of new impervious surface):	0	\$3.00	per SF
=iltration water treatment (SF of imperv surface):	0	\$0.00	per SF
WALLS			
Retaining walls (SF):	0		per SF
Noise walls (LF):	0		per SF

Project Quantity and Unit Cost

SR: 002
BARM: $\mathbf{5 0 . 1 0}$
EARM: $\mathbf{5 0 . 8 0}$
Project Title: Nahahum Canyon Road
\# of NoBuild Lane in NB/EB direction: $0 \quad$ \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

BRIDGES

Removal of existing bridges (SF):	0	75 per SF
Bridge widening (SF):	0	250 per SF
Bridge - span up to 140' (SF):	0	150 per SF
Bridge - span up to 200' (SF):	0	200 per SF
Bridge - span up to 400' (SF):	0	300 per SF
Bridge - span more than 400' (SF):	0	325 per SF
Floating bridge (SF):	0	440 per SF
Movable bridge (SF):	0	1,650 per SF
Lids without Ventilation (SF):	0	150 per SF
Tunnel (LF):	0	71,500 per LF
Pedestrian Bridge (SF):	0	140 per SF
Railroad bridge replacement (LF):	0	11,000 per LF

PAVEMENTS

Asphalt Concrete Pavement, ACP (SF):	88,704	$\$ 3.00$ per SF
PCC Pavement (SF):	0	$\$ 5.52$ per SF

ROADSIDE DEVELOPMENT

Fencing (LF):	0	15 per LF
Seeding, mulching and fertilizing (Acre):	2.52	1,500 per Acre
Roadside Restoration (Lump sum):	1.40	100,000 per Lump sum

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Quantity and Unit Cost

SR: 002 BARM: $\mathbf{5 0 . 1 0}$ EARM: $\mathbf{5 0 . 8 0}$
Project Title: Nahahum Canyon Road
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in SB/WB direction: 0
TRAFFIC SERVICES AND SAFETY

Guardrail (LF):	739	\$13	per LF
Guardrail terminal (Each):	3	\$1,700	per Each
Concrete barrier(LF):	0	\$25	per LF
Impact attenuator (Each):	0	\$30,000	per Each
Signal (Each):	0	\$150,000	per Each
Roundabout (Each):	0	\$0	per Each
Illumination (Each):	0	\$8,000	per Each
ITS (Lump sum):	1.40	\$200,000	per Lump sum
Signing (Lump sum):	1.40	\$25,000	per Lump sum
Cantilever sign bridge (Each):	0	\$30,000	per Each
Sign bridge (Each):	0	\$80,000	per Each
Traffic marking (LF):	14,784	\$0.25	per LF
Raised channelization (LF):	0	\$6	per LF
こurb, gutter and sidewalk (LF):	0	\$32	per LF
WETLAND MITIGATION			
Category I - High value wetland (Acre):	0.00	\$2,500,000	per Acre
Category II and III - Medium value wetland (Acre):	0.00	\$1,900,000	per Acre
Category IV - Low value wetland (Acre):	0.00	\$300,000	per Acre
Stream culvert (Each):	0	\$1,500,000	per Each
Beach restoration (Each):	0	\$1,000,000	per Each
RIGHT OF WAY Vacant land (Acre):	0.00	\$27,000	per Acre
Residential land (Acre):	0.00	\$336,000	per Acre
Commercial land (Acre):	0.00	\$368,000	per Acre

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Cost: Detailed Report

SR: 002
BARM: $\mathbf{5 0 . 1 0}$
EARM: $\mathbf{5 0 . 8 0}$
Project Title: Nahahum Canyon Road
\# of NoBuild Lane in NB/EB direction: 0
\# of Build Lane in NB/EB direction: 2
\# of NoBuild Lane in SB/WB direction: 0 \# of Build Lane in SB/WB direction: 0

GRADING Grading Total:	\$544,965
Clear and grub (Acre):	\$1,764
Building demolition (Lump sum):	\$0
Removal of structures (Lump sum):	\$0
Pavement removal (SY):	\$0
Roadside cleanup (Lump sum):	\$14,000
Roadway excavation (CY):	\$151,200
Gravel borrow/embankment compaction (Ton):	\$378,000
DRAINAGE Drainage Total:	\$241,640
Removal of drainage Structure (Each):	\$0
Conveyance: 24" RCSSP (LF):	\$0
Catch basin: Type 2-48" (Each):	\$0
Collection pipe:12" PCSSP (LF):	\$0
Large culvert (LF):	\$224,000
Ditch excavation (LF):	\$17,640
STORMWATER DETENTION AND TREATMENT Total:	\$71,850
Detention pond (SF of new impervious surface):	\$39,917
Water quality pond (SF of new impervious surface):	\$31,933
Detention vault (SF of new impervious surface):	\$0
Filtration water treatment (SF of new impervious surface):	\$0
WALLS Walls Total:	\$0
Retaining walls (SF):	\$0
Noise walls (LF):	\$0

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Cost: Detailed Report

SR: 002 BARM: $\mathbf{5 0 . 1 0}$ EARM: $\mathbf{5 0 . 8 0}$

Roadside Dev. Total: $\quad \mathbf{\$ 1 4 3 , 7 8 0}$
Fencing (LF): $\quad \$ 0$

Seeding, mulching and fertilizing (Acre):	$\$ 3,780$
Roadside Restoration (Lump sum):	$\$ 140,000$

These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

Project Cost: Detailed Report

SR: 002 BARM: $\mathbf{5 0 . 1 0}$ EARM: $\mathbf{5 0 . 8 0}$

Project Title: Nahahum Canyon Road

\# of NoBuild Lane in NB/EB direction: 0 \# of NoBuild Lane in SB/WB direction: 0
\# of Build Lane in NB/EB direction: 2 \# of Build Lane in SB/WB direction: 0

TRAFFIC SERVICES AND SAFETY	Traffic Total:	$\mathbf{\$ 5 3 , 0 6 6}$
	Guardrail (LF):	$\$ 9,610$
	Guardrail terminal (Each):	$\$ 4,760$
	Concrete barrier(LF):	$\$ 0$
	Impact attenuator (Each):	$\$ 0$

Signal (Each): $\quad \$ 0$
Roundabout (Each): \$0
Illumination (Each): \$0
ITS (Lump sum): $\$ 0$
Signing (Lump sum): $\quad \$ 35,000$
Cantilever sign bridge (Each): $\$ 0$
Sign bridge (Each): \$0
Traffic marking (LF): $\quad \$ 3,696$
Raised channelization (LF): \$0
Curb, gutter and sidewalk (LF): \$0
WETLAND MITIGATION
Wetland Total: $\quad \$ 0$
Category I - High value wetland (Acre): \$0
Category II and III - Medium value wetland (Acre): \$0
Category IV - Low value wetland (Acre): \$0
Stream culvert (Each): \$0
Beach restoration (Each): \$0
RIGHT OF WAY ROW Total: \$0
Vacant land (Acre): \$0
Residential land (Acre): $\$ 0$
Commercial land (Acre): $\quad \$ 0$
OTHER ITEMS User defined additional items: \$0
These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.
Date Printed: Tuesday, February 24, 2015

[^0]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

[^1]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

[^2]: These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

[^3]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

[^4]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

[^5]: These quantities have been calculated by using quantities per lane-mile from WSDOT's past projects.

[^6]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

[^7]: * This estimate is based on little or no design work, and hence intended for use for planning purposes only.

