Icicle Creek Instream Flow Sub Committee

Of the Icicle Work Group

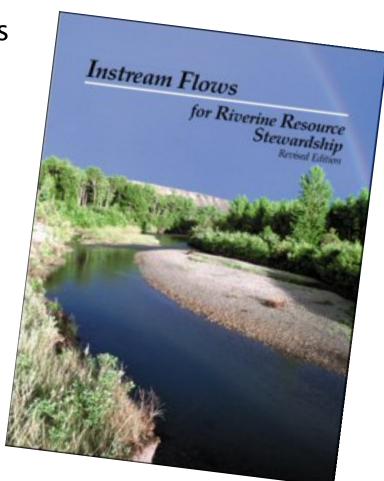
March 28, 2014

- This is a working presentation. The IFC will discuss technical issues in relation to the slide content.
- ▶ Outcome (after 2nd IFC meeting): how project alternatives benefit instream flow, fish, and habitat.

IFC Primary Tasks

- Scientific defense for IWG recommendations
- Understand fish, flow, and instream habitat relationships
 - ESA Bull trout, steelhead, spring Chinook
 - Other species whitefish, lamprey, resident fish & shellfish
- Fish, flow, and instream habitat guidance for water management below RM 5.8

IFC Primary Tasks - cont.


- Reach agreement on biological & hydrological criteria
 - > Specific reach needs
- Template for future technical review
- Identify data gaps

IFC Primary Tasks - cont.

- Assess flow & habitat effects/benefits from...
 - Alpine Lakes alternatives
 - Eightmile Lake storage alternatives
 - Icicle Peshastin Irrigation District Pump Exchange project
 - Irrigation districts efficiencies
 - Groundwater studies
 - > Instream flow rule feasibility 0.4 cfs reservation allotment
 - Sediment transport & hydrology link to instream habitat

Science Provides Best Information

- ▶ Basic Instream Flow Science
 - Eight Ecosystem Components
 - 1. Hydrology
 - 2. Geomorphology
 - 3. Biology
 - 4. Water Quality
 - 5. Connectivity
 - 6. Public Involvement
 - 7. Legal
 - 8. Institutional

IFC will NOT....

- Address public involvement
- Address institutional needs
- Address water right validity, unless relevant
- Address screening violations
- Address recovery actions

Fish Species and Status

- Bull trout ESA Threatened; adfluvial, fluvial, and resident stocks; adults, subadults, juveniles
 - > est. 525 fish/mile (USFS analysis 2007)
 - > smallest core Wenatchee population
- Spring Chinook ESA Endangered; hatchery stock management
- Steelhead ESA Threatened; No more hatchery releases. Remnant natural stock
 - Production = low

Fish Species Status - cont.

- Hatchery coho
 - > Future natural production = ?
- Rainbow trout
 - > 800 fish/mile (WFC 2007)
 - > stocked until 1992
- Resident
 - whitefish, westslope cutthroat, redband trout, lamprey, suckers, & more
- Non resident Brook trout
- ▶ Shellfish biologic, cultural, & ecosystem values important

Basic Fish Needs in Lower Icicle

- Cool clean water
- Specific velocities and depth
- No migration barriers
 - > includes flow
- Pools for holding
- Cover
 - > avoid predators, BT subadult & adult

Basic Fish Needs - cont.

- Forage for juveniles and migrating stocks
- Substrate/gravel
 - > low embeddedness
- Refuge for juveniles; low velocity water
 - >Link to riparian health
 - > boulders
- Over wintering habitat
- Gene fitness
 - > adapt to environment; linked to passage & distribution

Target Reaches

- ▶ Reach 1 Upstream of Icicle & Peshastin ID POD; RM 5.7 to headwaters
- Reach 2 Between ID POD and LNFH POD; RM 4.5
 5.7
- ▶ Reach 3 Between LNFH POD and the hatchery outflow; RM 2.7 4.5
- ▶ Reach 4 Downstream of hatchery outflow to the confluence with Wenatchee River; RM 0.0 – 2.7

Fish & Flow Habitat Functions

Passage

> weirs, depth, temperature, boulder field

Cover

adult &juvenile refuge, including refuge for Wenatchee core BT population during fluvial migration

Spawning

> substrate, velocity, depth

Rearing

> velocity, depth,

Channel complexity

> low energy zones, riparian connectivity

Habitat Suitability Preferences

Species & Life Stage	Depth (ft)	Velocity (fps)	Notes
Bull trout – rearing	1.60 - 1.79	.40 - 0.49	> 35 ft width
Bull trout – spawning	.8089	.70 - 0.89	
SH - rearing	2.80 - 2.89	1.40 - 1.49	> 35 ft width
SH – spawning	1.30 - 1.49	2.10 - 2.19	
Sp. Chin – rearing	2.20 - 2.29	.60 - 0.69	
Sp. Chin – spawning	1.0 - 1.09	1.90 - 2.29	
RB trout – rearing	2.80 - 2.89	1.40 - 1.49	
RB trout - spawning	.559; .999	1.60 - 1.89	
Whitefish – rearing	3.50 - 3.59	1.50 - 1.59	
Whitefish - adults	3.10 - 3.29	1.90 - 1.99	Combined spawning & holding

Instream Habitat <u>Values</u> Important for Fish in Icicle Creek

- Channel meandering
- Instream debris
- Depth
- Velocity
- Substrate embeddedness
- Cover
- Hyporheic flows

How & When Does Water Savings Benefit Fish Life?

Passage

- Summer low flow
- Culverts, by-pass, diversions, other structures

Fish Presence

- > Time of year migration needs
- Rearing & spawning
- Trophic relationships

Future Conditions

- Does the project facilitate barrier removal?
- Flow supplementation potential during which life stage?

Ancillary Benefits

> Eco-connectivity

Complex Instream Flow & Habitat Studies

- ▶ USFWS 2013
 - ➤ Historical channel; RM 2.7 to 3.8
 - > IFIM River 2D
- USBOR, 2005
 - ➤ Downstream of LNFH; RM 0.2 to 2.4
 - > PHABSIM
- Montgomery Water Group, Inc., 2004
 - > RM 3.9 to 4.5
 - > Tennant, Hatfield & Bruce, PHABSIM, and fish passage depth
- Wild Fish Conservancy 2007 fish, fish passage, & habitat
- 1985 study?

Icicle Instream Flows - General Info

- Icicle Creek provides 19 % of total Wenatchee River summer low flows.
- Minimum = 44 cfs
- Maximum = 14,100 cfs?
- On 303 (d) list low flows (2008)
- ▶ Water temperature exceeds 15° C (2008)
- Peak flows reduced
 - >Impacts complexity & diversity in historical channel

Weighted Usable Area (WUA)

USFWS 2013 - Historical Channel; RM 2.7 to 3.8

Spawning

Rearing

Species	Converted	Corresp Flows*		Converted	Corres	Corresp. Flows	
	Max WUA * to ft2	USGS	Str 2	Max WUA* to ft2	USGS	Str2	
Coho	6,178	129	90	NA	NA	NA	
Chinook	3,304	193	140	8,083	193	140	
Steelhead	5,651	218	160	9,752	325	250	
Rainbow	1,571	129	90	9,752	325	250	
Cutthroat	1,679	NA	30	0,533	193	140	
Whitefish	6,770	596	500	12,787	1,115	950	
Lamprey	2,615	NA	40	BT-8,686	243	180	
Suckers	1,571	129	90	4,606	NA	50	

^{*} Flows are in cfs

^{*} WUA was sq. meters of habitat per 1,000 lineal feet of stream

Weighted Usable Area (WUA)

Species	Max WUA*	Spawning Flows*	Max WUA	Rearing Flows
Chinook	45,263	400	16,366	250
Steelhead	29,411	650	15,970	550
Bull trout	18,817	70	7,257	40

USBOR 2005

– Confluence
to LNFH; RM
0.2 to 2.4
PHABSIM

Species	WUA	Flows
Steelhead juveniles	141	291
Bull trout - adults & juveniles	51.8	291

Montgomery 2004 – RM 3.9 to 4.5 PHABSIM

Species	Rearing &	& Spawning	Optimal Flows (cfs)
Chinook	156	271	
Steelhead	181	302	
Rainbow	193	330	

Montgomery 2004 – RM 3.9 to 4.5 Hatfield & Bruce method

* All flows are in cfs

*WUA is sq. feet of habitat per 1,000 lineal feet of stream

Flow & Habitat Data Summary By Reach

Spawning

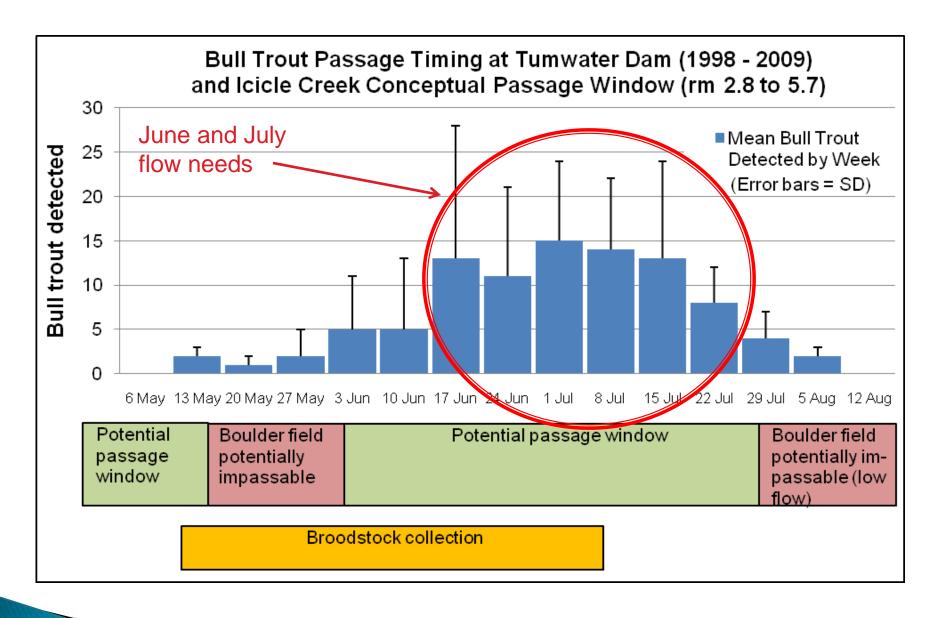
	Steelh	ead	Chi	nook	Bull tr	out	Rain	bow
Reach	WUA	Flow	WUA	Flow	WUA	Flow	WUA	Flow
1	no data		no data		present		present	
2	-	302	-	271	-	-	-	330
3	5,651	160	3,304	140	-	-	1,571	90
4	29,411	650	45,263	400	18,817	70	-	-

Rearing

	Steelh	ead	Chi	nook	Bull tr	out	Rainb	ow
Reach	WUA	Flow	WUA	Flow	WUA	Flow	WUA	Flow
1	no data		no data		present		present	
2	-	181	-	156	-	291	-	193
3	9,752	250	8,083	140	8,686	180	9,752	250
4	15,970	550	16,366	250	7,257	40	-	_

Flow Rule 2008 And Historical Flows Upstream at RM 5.8

Are these Qi appropriate flows for above the LNFH?


Flow rule control point = RM 1.5, within Reach 4

*Snow Creek USGS gage #12458000 (1936 to 2014)

Month/Day	Rule cfs, RM 1.5	Monthly Mean at RM 5.8*
January 1	267	303
Feb 1	267	293
Feb 15	566	
March 1	518	299
April 1	650	661
May 1	650	1,690
June 1	650	1,890
June 15	550	
July 1	550	874
Aug 1	400	264
Aug 15	343	
Sept 1	275	161
Oct 1	267	235
Nov 1	267	402
Dec 1	267	341

Fish Passage & Flow Requirements

- Low flows
 - > Depth criteria = small 0.4ft (trout), medium 0.6ft (SH), large 0.8ft (CH)
- Late summer temperatures for BT below hatchery
- Structure 2 & 5 management
- PODs fish ladders & bypass
- Boulder field
 - > Bull trout observed above boulders
 - September observations, 2002 (111 cfs) & 2004 (197 cfs)

Specific Projects and Potential Flow Benefits

Water Right Qi (cfs) or Qa Source Date **POD** (RM) Icicle Creek 1910 5.7 Icicle ID 83.3 2,500 AF Eightmile Lake 1930s? Peshastin ID Icicle Creek 34.4 5.7 1926 4.5 1905 7.0 Cascade Orchard IC LNFH Icicle Creek 1942 42 4.5 Upper **Snow Lakes** 1942 16,000 AF Snow LK Upland Wells 1939 -14.9 near RM 1980 2.8 to 3.8 Icicle Creek 1912 Surface = 275 AFCity of 5.5 GW = 926 AFLeavenworth Icicle Creek Icicle Creek 2008 0.1 cfs; additional Var. 0.4 cfs – depends on Reservation projects benefits

Var.

Surface = 986 AF

GW = 106 AF

Var.

Icicle Creek &

groundwater

Water Rights

Others

Project	Potential Flow Benefit	Reach – Potential	IFC level of review
Alpine Lakes Optimize	6.7 cfs	1-4 plus	
Raise U. Snow Lake 5ft	4.1 cfs	1-4 plus	
Raise L. Snow Lake 5ft	2.1 cfs	1-4 plus	
Increase drawdowns	1.1 cfs	1-4 plus	
Eightmile Lk - 1,600 AF	4.2 cfs		
1,827 AF			
2,500 AF			
5,000 AF	17 cfs		
IPID Pump Exchange	15 to 30 cfs	2-4, Wen. River	
IPID Efficiencies	Up to 9.9 cfs	2-4, Wen. River	
LNFH Water Conservation Study	Est.~ 10 to 20 cfs?	2–3	

Sum total = 44.8 to 90.9 cfs

Alpine Lakes Study

- USFWS & IPID
- Automation, optimization, storage capacity
- Flow Benefit
 - > ~14 cfs 75 days or 2,163 AF
 - small streams to confluence with Icicle Creek
 - Reaches 1 4, Wenatchee River, and Col. River?
- ▶ Extra flow in Reach 1-4 if other efficiencies applied

IPID Pump Exchange

- Various alternatives
- ▶ Benefits range from 15 to 30 cfs
 - Piping projects savings estimates are often conservative
- Lengthy primary reach
 - > to Peshastin Ck confluence
 - > to Mission Ck confluence
- Largest potential for instream flow & habitat restoration

IPID Irrigation Efficiencies + Cascade Orchard IC

- Piping
 - > High cost
 - > New technology and efficient operations
- Benefits depend on amount of pipe!
 - \triangleright IID est. = 5 cfs
 - \triangleright PID est. = 3.3 cfs
 - > COIC est. = 1.6 cfs
- Lengthy primary reach
 - > to Peshastin Ck confluence
 - > to Mission Ck confluence

Eightmile Lake

- Range of alternatives depend on:
 - > IWG consensus
 - > regulatory approval state & federal
- Flow benefits see chart
 - place of use doesn't change?
- Complete project for mutual benefit
 - Downstream users
 - Benefit reaches 1 to 4

Icicle & Peshastin ID Diversion Rate

Month	2003	2004	2005	Average
Apr	58.8	52.1	60.2	57
May	74.5	76	77.3	75.9
June	97.4	90.5	96.5	94.8
July	100.9	96.8	102.7	100.1
August	102	94.5	105.4	100.6
Sept	82.6	78.7	76.9	79.4
Total AF	31,267	29,604	31,449	30,766

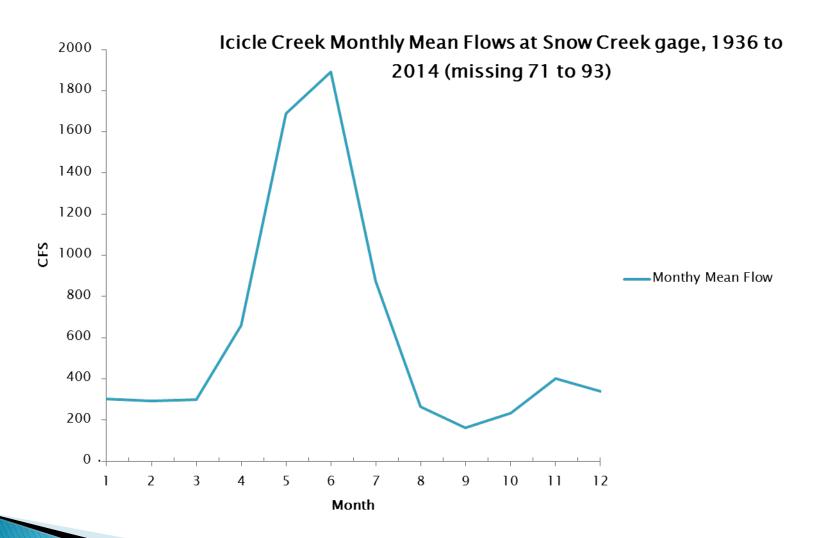
LNFH Groundwater Study

- Quantity of savings?
 - > further study (estimate of 10 to 20 cfs?)
- Beneficial reach non consumptive savings for Reaches 2 & 3
- Healthy winter/high flows as important for fish life as improving other base flows
 - > in historical channel
 - > Reach 4

Sediment Transport & Hydrologic Modeling

- Mostly physical instream/channel improvements
- Flow and habitat benefits?
- Flushing flow benefits to instream habitat

Snow Creek Monthly Mean Flow


Month	Mean Flow (cfs)	Qa
Oct	33.5	2,060
Nov	3.9	232
Dec	9.0	553
Jan	9.0	553
Feb	32.3	1,794
Mar	21.6	1,328
Apr	23.7	1,410
May	56.0	3,443
June	29.6	1,761
July	43.5	2,675
Aug	36.6	2,250
Sept	43.3	2,577

-1994 to 2002 - At confluence

Upper Snow Lake capacity = 12,450 AF of storage

≥USGS USGS 12458000 ICICLE CREEK ABOVE SNOW CREEK NEAR LEAVENWORTH, WA 20000 Φ cubic feet Φ 15000 Streamflow, second Φ 10000 O Φ 00 Peak 00 00 5000 Annual 0 1916 1928 1940 1952 1964 1976 1988 2000 2012

Icicle Creek Flow Monitoring Gage

Climate Change Discussion

- Sustainable flows
- ➤ Water quantity and quality for fish life
 ➤ Population persistence
- Water supply for ID, City, Hatchery, etc.
- Climate change effects are reasonably certain to continue into the foresee

Questions?

Paul LaRiviere Instream Flow Biologist WDFW 2620 N Commercial Ave Pasco, WA 99301

509 545-2057 509 492-1011 c